Arnon Avron

The Active Role of Language Extensions in Mathematical Reasoning

Workshop on Proofs and Formalization in Logic, Mathematics and Philosophy

Utrecht, September 2022
Prologue

All platonists are alike; each anti-platonist is unhappy in her/his own way...
Prologue

All platonists are alike;
each anti-platonist is unhappy in her/his own way...

One of my two aims in this talk is to present my own predicativist views and systems, which I believe are rather close to Weyl’s original ones as reflected in Das Kontinuum.
Explicit Extensions by Definitions

Let \mathcal{L} be a first-order language with equality; \mathbf{T} — a theory in \mathcal{L}
Explicit Extensions by Definitions

Let \mathcal{L} be a first-order language with equality; \mathcal{T} — a theory in \mathcal{L}

Adding a predicate symbol: Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n\}$, and let P be a new n-ary predicate symbol. \mathcal{T} can conservatively be extended to \mathcal{T}^* in $\mathcal{L} \cup \{P\}$ by the addition of the following axiom: $P(x_1, \ldots, x_n) \leftrightarrow \varphi$
Let \mathcal{L} be a first-order language with equality; \mathbf{T} — a theory in \mathcal{L}

Adding a predicate symbol: Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n\}$, and let P be a new n-ary predicate symbol. \mathbf{T} can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{P\}$ by the addition of the following axiom: $P(x_1, \ldots, x_n) \leftrightarrow \varphi$

Adding a function symbol: Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new n-ary function symbol. Suppose that $\vdash \mathbf{T} \forall x_1 \cdots \forall x_n \exists! y \varphi$. Then \mathbf{T} can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{F\}$ by the addition of either of the following axioms:

- $y = f(x_1, \ldots, x_n) \leftrightarrow \varphi$
- $\varphi\{f(x_1, \ldots, x_n)/y\}$
Let ϕ be a formula in L such that Fv(ϕ) = \{x_1, \ldots, x_n, y\}, and let
F be a new n-ary function symbol. Suppose that
\[\vdash T \forall x_1 \cdots \forall x_n \exists y \varphi. \]
Then T can conservatively be extended to T^* in L \cup \{F\} by the addition of the axiom \[\varphi\{f(x_1, \ldots, x_n)/y\}. \]

Puzzle:
Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new n-ary function symbol. Suppose that $\vdash_T \forall x_1 \cdots \forall x_n \exists y \varphi$. Then T can conservatively be extended to T^* in $\mathcal{L} \cup \{F\}$ by the addition of the axiom $\varphi\{f(x_1, \ldots, x_n)/y\}$.

Puzzle:

- $\vdash_{ZF} \forall x(x \neq \emptyset \rightarrow \exists y. y \in x)$
Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new n-ary function symbol. Suppose that $\vdash_T \forall x_1 \cdots \forall x_n \exists y \varphi$. Then T can conservatively be extended to T^* in $\mathcal{L} \cup \{F\}$ by the addition of the axiom $\varphi\{f(x_1, \ldots, x_n)/y\}$.

Puzzle:

- $\vdash_{ZF} \forall x(x \neq \emptyset \rightarrow \exists y.y \in x)$
- By Skolemization, we get that the axiom of global choice, $\forall x(x \neq \emptyset \rightarrow \epsilon(x) \in x)$, can conservatively be added to ZF.

It follows that $\vdash_{ZF} AC$. Hence ZF and ZFC are equivalent!
Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new n-ary function symbol. Suppose that $\vdash_T \forall x_1 \cdots \forall x_n \exists y \varphi$. Then T can conservatively be extended to T^* in $\mathcal{L} \cup \{F\}$ by the addition of the axiom $\varphi\{f(x_1, \ldots, x_n)/y\}$.

Puzzle:

- $\vdash_{ZF} \forall x (x \neq \emptyset \rightarrow \exists y. y \in x)$
- By Skolemization, we get that the axiom of global choice, $\forall x (x \neq \emptyset \rightarrow \epsilon(x) \in x)$, can conservatively be added to ZF.
- But it is well-known that the axiom of global choice implies AC, the usual axiom of choice of ZFC.
Skolemization

Let \(\varphi \) be a formula in \(\mathcal{L} \) such that \(\text{Fv}(\varphi) = \{x_1, \ldots, x_n, y\} \), and let \(F \) be a new \(n \)-ary function symbol. Suppose that \(\vdash_T \forall x_1 \cdots \forall x_n \exists y \varphi \). Then \(T \) can conservatively be extended to \(T^* \) in \(\mathcal{L} \cup \{F\} \) by the addition of the axiom \(\varphi\{f(x_1, \ldots, x_n)/y\} \).

Puzzle:

- \(\vdash_{ZF} \forall x(x \neq \emptyset \rightarrow \exists y.y \in x) \)
- By Skolemization, we get that the axiom of global choice, \(\forall x(x \neq \emptyset \rightarrow \epsilon(x) \in x) \), can conservatively be added to \(ZF \).
- But it is well-known that the axiom of global choice implies AC, the usual axiom of choice of \(ZFC \).
- It follows that \(\vdash_{ZF} AC \). Hence \(ZF \) and \(ZFC \) are equivalent!
Recursive Definitions — Two Approaches

1) Using induction to justify recursion: The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S^\star of it. Such proofs use principles of induction which are available in S or S^\star, and are frequently impredicative. If S is first-order then S^\star is usually either the second-order version of it, or its meta-theory.

Examples:
1. The introduction of $+$ in the books of Landau and Mendelson on the foundations of Analysis.
2. The justification of transfinite recursion in standard textbooks on axiomatic set theories.
Recursive Definitions — Two Approaches

1) Using induction to justify recursion:
1) Using induction to justify recursion:

- The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S^* of it. Such proofs use principles of induction which are available in S or S^*, and are frequently impredicative.
1) Using induction to justify recursion:

- The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S^* of it. Such proofs use principles of induction which are available in S or S^*, and are frequently impredicative.

- If S is first-order then S^* is usually either the second-order version of it, or its meta-theory.
1) Using induction to justify recursion:

- The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S^* of it. Such proofs use principles of induction which are available in S or S^*, and are frequently impredicative.

- If S is first-order then S^* is usually either the second-order version of it, or its meta-theory.

Examples:

1. The introduction of $+$ in the books of Landau and Mendelson on the foundations of Analysis.
Recursive Definitions — Two Approaches

1) Using induction to justify recursion:
 - The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S^* of it. Such proofs use principles of induction which are available in S or S^*, and are frequently impredicative.
 - If S is first-order then S^* is usually either the second-order version of it, or its meta-theory.
 - Examples:
 1. The introduction of $+$ in the books of Landau and Mendelson on the foundations of Analysis.
 2. The justification of transfinite recursion in standard textbooks on axiomatic set theories.
Recursive Definitions — Two Approaches (Continued)

The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed. Once the language of S is extended by axioms of a recursive definition, the induction of S is automatically extended to the expanded language.

Examples:
1. Primitive Recursive Arithmetic (PRA).
2. Weyl's iteration operation in "Das Kontinuum".
3. Adding truth-definition to PA and other systems. In all these examples, the extension of S to the richer language is not conservative, but it is predicatively justified.
2) Viewing induction and recursion on a par:
2) Viewing induction and recursion on a par:

- The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed.
2) Viewing induction and recursion on a par:

- The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed.

- Once the language of S is extended by axioms of a recursive definition, the induction of S is automatically extended to the expanded language.
2) Viewing induction and recursion on a par:

- The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed.

- Once the language of S is extended by axioms of a recursive definition, the induction of S is automatically extended to the expanded language.

- Examples:
 1. Primitive Recursive Arithmetic (PRA).
 2. Weyl’s iteration operation in “Das Kontinuum”.
 3. Adding truth-definition to PA and other systems.
2) Viewing induction and recursion on a par:

- The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed.
- Once the language of S is extended by axioms of a recursive definition, the induction of S is automatically extended to the expanded language.

Examples:
1. Primitive Recursive Arithmetic (PRA).
2. Weyl’s iteration operation in “Das Kontinuum”.
3. Adding truth-definition to PA and other systems.

In all these examples, the extension of S to the richer language is not conservative, but it is predicatively justified.
The Ideal Set Theory

Extensionality:

\[\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y \]

The Comprehension Schema:

\[\forall x (x \in \{x \mid \varphi\} \leftrightarrow \varphi) \]

\[\in\text{-induction:} \]

\[(\forall x (\forall y (y \in x \rightarrow \varphi\{y/x\}) \rightarrow \varphi)) \rightarrow \forall x \varphi \]
The Ideal Set Theory

Extensionality:

\[\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y \]

The Comprehension Schema:

\[\forall x (x \in \{ x \mid \varphi \} \leftrightarrow \varphi) \]

\[\in\text{-}induction: \]

\[(\forall x (\forall y (y \in x \rightarrow \varphi\{y/x\}) \rightarrow \varphi)) \rightarrow \forall x \varphi \]

This theory reflects real mathematical practice. In particular: it allows the use of abstraction terms.
The Ideal Set Theory

Extensionality:

\[\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y \]

The Comprehension Schema:

\[\forall x (x \in \{x \mid \varphi\} \leftrightarrow \varphi) \]

\[\epsilon\text{-induction:} \]

\[(\forall x (\forall y (y \in x \rightarrow \varphi\{y/x\}) \rightarrow \varphi)) \rightarrow \forall x \varphi \]

This theory reflects real mathematical practice. In particular: it allows the use of abstraction terms.

Ideal, but inconsistent!
Giving up Some Ideals

Extensionality:

\[\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y \]

The Comprehension Schema:

\[\forall x (x \in \{x \mid \varphi\} \leftrightarrow \varphi), \text{ if } \varphi \text{ is safe w.r.t. } x \]

\[(\varphi \not
\in \{x\}). \]

\[\epsilon\text{-induction:} \]

\[(\forall x (\forall y (y \in x \rightarrow \varphi\{y/x\}) \rightarrow \varphi)) \rightarrow \forall x \varphi \]
Sets (and functions) are created only by definitions.

“No one can describe an infinite set other than by indicating properties which are characteristic of the elements of the set. . . . The notion that an infinite set as a “gathering” brought together by infinitely many individual arbitrary acts of selection, assembled and then surveyed as a whole by consciousness, is nonsensical;” [Weyl]
- **Sets** (and functions) are created only by definitions.

 “No one can describe an infinite set other than by indicating properties which are characteristic of the elements of the set. . . . The notion that an infinite set as a “gathering” brought together by infinitely many individual arbitrary acts of selection, assembled and then surveyed as a whole by consciousness, is nonsensical;” [Weyl]

- **Sets are “produced” genetically** [Weyl]. Therefore the elements of a set are “logically prior” to that set.
A definition is predicative if the class it defines is invariant under extension.

“Hence a distinction between two species of classifications, which are applicable to the elements of infinite collections: the predicative classifications, which cannot be disordered by the introduction of new elements; the non-predicative classifications, which are forced to remain without end by the introduction of new elements.”

[Poincaré]
A set theory is determined by its safety relation \succ.

The meaning of $\phi(x_1, \ldots, x_n, y_1, \ldots, y_k) \succ \{x_1, \ldots, x_n\}$ is:

"The collection $\{\langle x_1, \ldots, x_n \rangle \mid \phi\}$ is an acceptable set for all acceptable values of y_1, \ldots, y_k. Predicatively, the meaning is: "the identity of $\{\langle x_1, \ldots, x_n \rangle \mid \phi\}$ is stable: it depends only on the values assigned to y_1, \ldots, y_k, but not on the surrounding universe."
A set theory is determined by its safety relation \rhd.

\rhd is a relation between a formula φ and subsets of $Fv(\varphi)$.
A set theory is determined by its safety relation \succ.

\succ is a relation between a formula φ and subsets of $Fv(\varphi)$.

The meaning of “$\varphi(x_1,\ldots,x_n,y_1,\ldots,y_k) \succ \{x_1,\ldots,x_n\}$” is:

“The collection $\{\langle x_1,\ldots,x_n \rangle \mid \varphi \}$ is an acceptable set for all acceptable values of y_1,\ldots,y_k.
A set theory is determined by its safety relation \succ.

\succ is a relation between a formula φ and subsets of $Fv(\varphi)$.

The meaning of “$\varphi(x_1, \ldots, x_n, y_1, \ldots, y_k) \succ \{x_1, \ldots, x_n\}$” is: “The collection $\{\langle x_1, \ldots, x_n \rangle \mid \varphi\}$ is an acceptable set for all acceptable values of y_1, \ldots, y_k.

Predicatively, the meaning is: “the identity of $\{\langle x_1, \ldots, x_n \rangle \mid \varphi\}$ is stable: it depends only on the values assigned to y_1, \ldots, y_k, but not on the surrounding universe.
Two Important Special Cases

\(k = 0: \) \(\varphi \) is predicative with respect to \(Fv(\varphi) \) iff it is domain independent in the sense of database theory.
Two Important Special Cases

\[k = 0: \] \(\varphi \) is predicative with respect to \(Fv(\varphi) \) iff it is domain independent in the sense of database theory.

\[n = 0: \] \(\varphi \) is predicative with respect to \(\emptyset \), if for every transitive \(S_1 \) and \(S_2 \) such that \(S_1 \subseteq S_2 \) and for every \(b_1 \in S_1, \ldots, b_k \in S_1 \):

\[S_2 \models \varphi(b_1, \ldots, b_k) \iff S_1 \models \varphi(b_1, \ldots, b_k) \]

I. e., if \(\varphi \) is absolute.
Basic (Set-theoretical) Conditions on Safety

- $\varphi \succ \emptyset$ if φ is atomic.
- $x=t \succ \{x\}$ if $x \not\in \text{Fv}(t)$.
- $x \in t \succ \{x\}$ if $x \not\in \text{Fv}(t)$ or t is x.
- $\neg \varphi \succ \emptyset$ if $\varphi \succ \emptyset$.
- $\varphi \lor \psi \succ X$ if $\varphi \succ X$ and $\psi \succ X$.
- $\varphi \land \psi \succ X \cup Y$ if $\varphi \succ X$, $\psi \succ Y$ and $Y \cap \text{Fv}(\varphi) = \emptyset$.
- $\exists y \varphi \succ X - \{y\}$ if $y \in X$ and $\varphi \succ X$.
Basic (Set-theoretical) Conditions on Safety

- $\varphi \succ \emptyset$ if φ is atomic.
- $x=t \succ \{x\}$ if $x \notin Fv(t)$.
- $x \in t \succ \{x\}$ if $x \notin Fv(t)$ or t is x.
- $\neg \varphi \succ \emptyset$ if $\varphi \succ \emptyset$.
- $\varphi \lor \psi \succ X$ if $\varphi \succ X$ and $\psi \succ X$.
- $\varphi \land \psi \succ X \cup Y$ if $\varphi \succ X$, $\psi \succ Y$ and $Y \cap Fv(\varphi) = \emptyset$.
- $\exists y \varphi \succ X - \{y\}$ if $y \in X$ and $\varphi \succ X$.

We denote by \succ_{RST} the minimal relation which satisfies these conditions, and by RST (Rudimentary Set Theory) the set theory which is induced by \succ_{RST}.
The Power of RST

- \(\emptyset =_{Df} \{x \mid x \in x \} \).
- \(s - t =_{Df} \{x \mid x \in s \land \neg x \in t \} \).
- \(\{t_1, \ldots, t_n\} =_{Df} \{x \mid x = t_1 \lor \ldots \lor x = t_n \} \).
- \(\langle t, s \rangle =_{Df} \{\{t\}, \{t, s\}\} \).
- \(\{x \in t \mid \varphi\} =_{Df} \{x \mid x \in t \land \varphi\} \), provided \(\varphi \succ \emptyset \).
- \(\{t(x) \mid x \in s\} =_{Df} \{y \mid \exists x. x \in s \land y = t\} \).
- \(\bigcup t =_{Df} \{x \mid \exists y. y \in t \land x \in y\} \).
- \(s \times t =_{Df} \{x \mid \exists a \exists b. a \in s \land b \in t \land x = \langle a, b \rangle\} \).
- \(\iota x \varphi =_{Df} \bigcup \{x \mid \varphi\} \) (provided \(\varphi \succ \{x\}\)).
- \(\lambda x \in s. t =_{Df} \{\langle x, t \rangle \mid x \in s\} \).
- \(f(x) =_{Df} \iota y. \exists z \exists v(z \in f \land v \in z \land y \in v \land z = \langle x, y \rangle) \).
Handling Other Comprehension Axioms

Each of the other Comprehension axioms of ZF can be captured (in a modular way) by adding to the definition of \succ_{RST} a certain syntactic condition:
Handling Other Comprehension Axioms

Each of the other Comprehension axioms of ZF can be captured (in a modular way) by adding to the definition of \succ_{RST} a certain syntactic condition:

Full Separation: $\varphi \succ \emptyset$ for every formula φ.
Each of the other Comprehension axioms of ZF can be captured (in a modular way) by adding to the definition of \succ_{RST} a certain syntactic condition:

Full Separation: $\varphi \succ \emptyset$ for every formula φ.

Powerset: $x \subseteq t \succ \{x\}$ if $x \notin Fv(t)$.
Handling Other Comprehension Axioms

Each of the other Comprehension axioms of ZF can be captured (in a modular way) by adding to the definition of \succ_{RST} a certain syntactic condition:

Full Separation: $\varphi \succ \emptyset$ for every formula φ.

Powerset: $x \subseteq t \succ \{x\}$ if $x \notin Fv(t)$.

Full Replacement: $\exists y \varphi \land \forall y (\varphi \to \psi) \succ X$

provided $\psi \succ X$, and $X \cap Fv(\varphi) = \emptyset$.
Let $S(x) = x \cup \{x\}$.

The Axiom of Infinity: Introducing ω
Let $S(x) = x \cup \{x\}$.

- Define: $N(x) := \forall y \in S(x)(y = \emptyset \lor \exists z \in x.y = S(z))$
The Axiom of Infinity: Introducing ω

Let $S(x) = x \cup \{x\}$.

- Define: $N(x) := \forall y \in S(x) (y = \emptyset \lor \exists z \in x. y = S(z))$
- Obviously, the collection $[x:N(x)]$ is stable.
Let $S(x) = x \cup \{x\}$.

- Define: $N(x) := \forall y \in S(x) (y = \emptyset \lor \exists z \in x. y = S(z))$
- Obviously, the collection $[x:N(x)]$ is stable.
- This justifies the addition to the language of a new constant ω, together with the following axiom:

$$\forall x(x \in \omega \leftrightarrow N(x))$$
The Axiom of Infinity: Introducing ω

Let $S(x) = x \cup \{x\}$.

- Define: $N(x) := \forall y \in S(x)(y = \emptyset \lor \exists z \in x.y = S(z))$
- Obviously, the collection $[x:N(x)]$ is stable.
- This justifies the addition to the language of a new constant ω, together with the following axiom:

\[\forall x(x \in \omega \leftrightarrow N(x)) \]

- In RST we have only that $N(x) \succ \emptyset$. In the new system, $\text{RST}\omega$, we practically have $N(x) \succ \{x\}$. This means many more instances in the basic language of the schemas of RST.
Our Framework for Predicative Set Theories

Our main method of extending a given predicative set theory T to a stronger one is by adding a new symbol to the signature of T, together with an axiom that defines it. Adding an n-ary predicate symbol P is allowed only if its defining axiom implies its absoluteness. Like in the case of $t_1 = t_2$ and $t_1 \in t_2$, stronger safety conditions might hold for some atomic formulas of the form $P(t_1, \ldots, t_n)$.

Adding an n-ary function symbol F is allowed only if its defining axiom implies that if y is not free in t_1, \ldots, t_n then the formula $y = F(t_1, \ldots, t_n)$ is safe with respect to $\{y\}$.

As usual, extending T by a function symbol is allowed only if T proves some corresponding existence and uniqueness conditions. Still, the extension is usually not conservative.
Our main method of extending a given predicative set theory T to a stronger one is by adding a new symbol to the signature of T, together with an axiom that defines it.

Adding an n-ary predicate symbol P is allowed only if its defining axiom implies its absoluteness. Like in the case of $t_1 = t_2$ and $t_1 \in t_2$, stronger safety conditions might hold for some atomic formulas of the form $P(t_1, \ldots, t_n)$.

Adding an n-ary function symbol F is allowed only if its defining axiom implies that if y is not free in t_1, \ldots, t_n then the formula $y = F(t_1, \ldots, t_n)$ is safe with respect to $\{y\}$.

As usual, extending T by a function symbol is allowed only if T proves some corresponding existence and uniqueness conditions. Still, the extension is usually not conservative.
Our main method of extending a given predicative set theory T to a stronger one is by adding a new symbol to the signature of T, together with an axiom that defines it.

Adding an n-ary predicate symbol P is allowed only if its defining axiom implies its absoluteness. Like in the case of $t_1 = t_2$ and $t_1 \in t_2$, stronger safety conditions might hold for some atomic formulas of the form $P(t_1, \ldots, t_n)$.
Our main method of extending a given predicative set theory T to a stronger one is by adding a new symbol to the signature of T, together with an axiom that defines it.

Adding an n-ary predicate symbol P is allowed only if its defining axiom implies its absoluteness. Like in the case of $t_1 = t_2$ and $t_1 \in t_2$, stronger safety conditions might hold for some atomic formulas of the form $P(t_1, \ldots, t_n)$.

Adding an n-ary function symbol F is allowed only if its defining axiom implies that if y is not free in t_1, \ldots, t_n then the formula $y = F(t_1, \ldots, t_n)$ is safe with respect to $\{y\}$.
Our Framework for Predicative Set Theories

- Our main method of extending a given predicative set theory \(T \) to a stronger one is by adding a new symbol to the signature of \(T \), together with an axiom that defines it.

- Adding an \(n \)-ary predicate symbol \(P \) is allowed only if its defining axiom implies its absoluteness. Like in the case of \(t_1 = t_2 \) and \(t_1 \in t_2 \), stronger safety conditions might hold for some atomic formulas of the form \(P(t_1, \ldots, t_n) \).

- Adding an \(n \)-ary function symbol \(F \) is allowed only if its defining axiom implies that if \(y \) is not free in \(t_1, \ldots, t_n \) then the formula \(y = F(t_1, \ldots, t_n) \) is safe with respect to \(\{y\} \).

- As usual, extending \(T \) by a function symbol is allowed only if \(T \) proves some corresponding existence and uniqueness conditions. Still, the extension is usually not conservative.
Let \mathcal{L} be a first-order language with equality which includes \in, let T be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new $n + k$-ary predicate symbol P.
Adding Predicate Symbols

Let \(L \) be a first-order language with equality which includes \(\in \), let \(T \) be a theory in \(L \) which is based on the safety relation \(\succ_L \), and let \(L^* \) be the language which is obtained from \(L \) by the addition of a new \(n + k \)-ary predicate symbol \(P \).

A simple principle: Suppose that \(\varphi \) is a formula of \(L \) such that \(Fv(\varphi) = \{x_1, \ldots, x_n, y_1, \ldots, y_k\} \) and \(\varphi \succ_L \{y_1, \ldots, y_k\} \). Then we may extend \(T \) to a theory \(T^* \) in \(L^* \) by:

- Adding the axiom \(P(x_1, \ldots, x_n, y_1, \ldots, y_k) \leftrightarrow \varphi \).
- Get \(\succ_{L^*} \) by adding to the definition of \(\succ_L \) the condition:
 \[
P(x_1, \ldots, x_n, y_1, \ldots, y_k) \succ_{L^*} \{y_1, \ldots, y_k\}
 \]
- Extending all the axiom schemas of \(T \) to \(L^* \), using \(\succ_{L^*} \) instead of \(\succ_L \).
Adding Predicate Symbols

Let \mathcal{L} be a first-order language with equality which includes \in, let T be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new $n + k$-ary predicate symbol P.

A simple principle: Suppose that φ is a formula of \mathcal{L} such that $\text{Fv}(\varphi) = \{x_1, \ldots, x_n, y_1, \ldots, y_k\}$ and $\varphi \succ_{\mathcal{L}} \{y_1, \ldots, y_k\}$. Then we may extend T to a theory T^* in \mathcal{L}^* by:

- Adding the axiom $P(x_1, \ldots, x_n, y_1, \ldots, y_k) \iff \varphi$.
- Get $\succ_{\mathcal{L}^*}$ by adding to the definition of $\succ_{\mathcal{L}}$ the condition: $P(x_1, \ldots, x_n, y_1, \ldots, y_k) \succ_{\mathcal{L}^*} \{y_1, \ldots, y_k\}$
- Extending all the axiom schemas of T to \mathcal{L}^*, using $\succ_{\mathcal{L}^*}$ instead of $\succ_{\mathcal{L}}$.

An example: add \subseteq to RST together with the axiom $x \subseteq y \iff \neg \exists z (z \in x \land z \notin y)$ and the condition: $x \subseteq y \succ \emptyset$.
A stronger principle: We can similarly extend T to T^* as above even if φ is a formula of L^*, provided that:

1. φ has no subformula of the form $P(x_1, \ldots, x_n, v_1, \ldots, v_k)$;
2. Let $u \not\in \{x_1, \ldots, x_n\}$ and let $1 \leq i, j \leq n$. If both $P(x_1, \ldots, x_{i-1}, u, \ldots)$ and $P(x_1, \ldots, x_{j-1}, u, \ldots)$ are subformulas of φ then $i = j$.
3. If $P(x_1, \ldots, x_{i-1}, u, \ldots)$ is a subformula of φ, where $u \not\in \{x_1, \ldots, x_n\}$ and $i \geq 1$, then u is bound in φ by $\exists u \in x_i$.
4. $\varphi \succ L^* \{y_1, \ldots, y_k\}$.

Under these conditions, P is uniquely defined, and is stable.
A stronger principle: We can similarly extend \mathbf{T} to \mathbf{T}^* as above even if φ is a formula of \mathcal{L}^*, provided that:

1. φ has no subformula of the form $P(x_1 \ldots, x_n, v_1, \ldots, v_k)$;
2. Let $u \notin \{x_1 \ldots, x_n\}$ and let $1 \leq i, j \leq n$. If both $P(x_1, \ldots, x_{i-1}, u, \ldots)$ and $P(x_1, \ldots, x_{j-1}, u, \ldots)$ are subformulas of φ then $i = j$.
3. If $P(x_1, \ldots, x_{i-1}, u, \ldots)$ is a subformula of φ, where $u \notin \{x_1 \ldots, x_n\}$ and $i \geq 1$, then u is bound in φ by $\exists u \in x_i$.
4. $\varphi \succ \mathcal{L}^* \{y_1, \ldots, y_k\}$.
A stronger principle: We can similarly extend T to T^* as above even if φ is a formula of L^*, provided that:

1. φ has no subformula of the form $P(x_1 \ldots, x_n, v_1, \ldots, v_k)$;
2. Let $u \not\in \{x_1 \ldots, x_n\}$ and let $1 \leq i, j \leq n$. If both $P(x_1, \ldots, x_{i-1}, u, \ldots)$ and $P(x_1, \ldots, x_{j-1}, u, \ldots)$ are subformulas of φ then $i = j$.
3. If $P(x_1, \ldots, x_{i-1}, u, \ldots)$ is a subformula of φ, where $u \not\in \{x_1 \ldots, x_n\}$ and $i \geq 1$, then u is bound in φ by $\exists u \in x_i$.
4. $\varphi \succ L^* \{y_1, \ldots, y_k\}$.

Under these conditions, P is uniquely defined, and is stable.
Transitive closure of \in: Add to the language the unary predicate symbol \in^*, together with the condition $y \in^* x \supset \{y\}$ and the axiom: $y \in^* x \iff y \in x \lor \exists z \in x. y \in^* z.$
Examples

Transitive closure of \in: Add to the language the unary predicate symbol \in^*, together with the condition $y \in^* x \supset \{y\}$ and the axiom: $y \in^* x \iff y \in x \lor \exists z \in x. y \in^* z$.

The Graph of \vdash: Add to the language the ternary predicate symbol P_\vdash, with the condition $P_\vdash(a, b, c) \supset \emptyset$ and the axiom:

$$P_\vdash(a, b, c) \iff (b = \emptyset \land c = a) \lor (a \in c \land \forall x \in c(a \leq x \rightarrow \exists y \in b P_\vdash(a, y, x)) \land \forall z \in b \exists w \in c P_\vdash(a, z, w))$$

Similarly, we can define the relations $P_{\lambda x.\omega^x}$, P_{ϕ}, and P_{Γ} as absolute relations (on ordinals).
Examples

Transitive closure of \in: Add to the language the unary predicate symbol \in^*, together with the condition $y \in^* x \supset \{y\}$ and the axiom: $y \in^* x \iff y \in x \lor \exists z \in x. y \in^* z$.

The Graph of $+$: Add to the language the ternary predicate symbol P_+, with the condition $P_+(a, b, c) \supset \emptyset$ and the axiom:

\[
P_+(a, b, c) \iff (b = \emptyset \land c = a) \lor \\
(a \in c \land \\
\forall x \in c (a \leq x \rightarrow \exists y \in b P_+(a, y, x)) \land \\
\forall z \in b \exists w \in c P_+(a, z, w))
\]

Similarly, we can define the relations $P_{\lambda x.\omega^x}$, P_ϕ, and P_Γ as absolute relations (on ordinals).

This is not sufficient, though!
Adding Function Symbols

Let \mathcal{L} be a first-order language with equality which includes \in, let \mathbf{T} be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new n-ary function symbol F.

A weak principle: Suppose that φ is a formula of \mathcal{L} such that $\text{Fv}(\varphi) = \{x_1,\ldots,x_n,y\}$ and $\varphi \succ_{\mathcal{L}} \{y\}$. If $\vdash_{\mathbf{T}} \forall x_1,\ldots,\forall x_n \exists ! y \varphi$ Then we may extend \mathbf{T} to a theory \mathbf{T}^* in \mathcal{L}^* by:

- Adding the axiom $\forall x_1,\ldots,\forall x_n \varphi\{F(x_1,\ldots,x_n/y)\}$.
- Extending all the axiom schemas of \mathbf{T} to \mathcal{L}^*, using $\succ_{\mathcal{L}^*}$ instead of $\succ_{\mathcal{L}}$.

Examples:

1. \bigcup, \times, ...
2. $\forall x \left[\forall z (z \in \text{TC}(x) \iff z \in \star x) \right]$
Adding Function Symbols

Let \mathcal{L} be a first-order language with equality which includes \in, let \mathbf{T} be a theory in \mathcal{L} which is based on the safety relation $\triangleright_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new n-ary function symbol F.

A weak principle: Suppose that φ is a formula of \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$ and $\varphi \triangleright_{\mathcal{L}} \{y\}$. If $\vdash_{\mathbf{T}} \exists! y \varphi$ Then we may extend \mathbf{T} to a theory \mathbf{T}^* in \mathcal{L}^* by:

- Adding the axiom $\forall x_1, \ldots, \forall x_n \varphi\{F(x_1, \ldots, x_n / y)\}$.
- Extending all the axiom schemas of \mathbf{T} to \mathcal{L}^*, using $\triangleright_{\mathcal{L}^*}$ instead of $\triangleright_{\mathcal{L}}$.
Adding Function Symbols

Let \mathcal{L} be a first-order language with equality which includes \in, let \mathbf{T} be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new n-ary function symbol F.

A weak principle: Suppose that φ is a formula of \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$ and $\varphi \succ_{\mathcal{L}} \{y\}$. If $\vdash_{\mathbf{T}} \forall x_1, \ldots, \forall x_n \exists! y \varphi$

Then we may extend \mathbf{T} to a theory \mathbf{T}^* in \mathcal{L}^* by:

- Adding the axiom $\forall x_1, \ldots, \forall x_n \varphi\{F(x_1, \ldots, x_n/y)\}$.
- Extending all the axiom schemas of \mathbf{T} to \mathcal{L}^*, using $\succ_{\mathcal{L}^*}$ instead of $\succ_{\mathcal{L}}$.

Examples:

1. \bigcup, \times, \ldots
2. $\forall x[\forall z(z \in \mathcal{T}C(x) \leftrightarrow z \in^* x)]$
A much stronger principle is obtained from the weak one if instead of $\varphi \succ_{\mathcal{L}} \{y\}$ we demand only that $\varphi \succ_{\mathcal{L}} \emptyset$.
A much stronger principle is obtained from the weak one if instead of $\varphi \succ \mathcal{L} \{y\}$ we demand only that $\varphi \succ \mathcal{L} \emptyset$.

The resulting \mathbf{T}^* is in this case not a conservative extension of \mathbf{T}, and it allows to define many new sets. Nevertheless, it is still predicatively justified by the stability criterion.
A much stronger principle is obtained from the weak one if instead of $\varphi \succ_L \{y\}$ we demand only that $\varphi \succ_L \emptyset$.

The resulting T^* is in this case not a conservative extension of T, and it allows to define many new sets. Nevertheless, it is still predicatively justified by the stability criterion.

Example: Any theory T which extends RST and includes P_+ proves uniqueness: $P_+(\alpha, \beta, \gamma_1) \land P_+(\alpha, \beta, \gamma_2) \rightarrow \gamma_1 = \gamma_2$. If it proves also existence: $\forall \alpha, \beta \exists \gamma P_+(\alpha, \beta, \gamma)$ then we can strengthen T by the addition of the corresponding function symbol $+$.
A much stronger principle is obtained from the weak one if instead of $\varphi \succ_{\mathcal{L}} \{y\}$ we demand only that $\varphi \succ_{\mathcal{L}} \emptyset$.

The resulting T^* is in this case not a conservative extension of T, and it allows to define many new sets. Nevertheless, it is still predicatively justified by the stability criterion.

Example: Any theory T which extends RST and includes P_+ proves uniqueness: $P_+(\alpha, \beta, \gamma_1) \land P_+(\alpha, \beta, \gamma_2) \rightarrow \gamma_1 = \gamma_2$. If it proves also existence: $\forall \alpha, \beta \exists \gamma P_+(\alpha, \beta, \gamma)$ then we can strengthen T by the addition of the corresponding function symbol $\,\!+$.

For this ε-induction frequently does not suffice, though. We need a new, predicatively justified, principle.
Feferman’s Unification Rule: If $\varphi \succ \emptyset$, then

From:

$$\forall x \in a \forall y_1 \forall y_2. \varphi\{y_1/y\} \wedge \varphi\{y_2/y\} \rightarrow y_1 = y_2$$

infer:

$$\forall x \in a \exists y \varphi \rightarrow \exists f (Function(f) \wedge Dom(f) = a \wedge \forall x \in a. \varphi(x, f(x)))$$

or (equivalently:)

$$\forall x \in a \exists! y \varphi \rightarrow \exists f (Function(f) \wedge Dom(f) = a \wedge \forall x \in a. \varphi(x, f(x)))$$
Feferman’s Unification Rule: If $\varphi \succ \emptyset$, then

From:

$$\forall x \in a \forall y_1 \forall y_2. \varphi\{y_1/y\} \land \varphi\{y_2/y\} \rightarrow y_1 = y_2$$

infer:

$$\forall x \in a \exists y \varphi \rightarrow \exists f(\text{Function}(f) \land \text{Dom}(f) = a \land \forall x \in a. \varphi(x, f(x)))$$

or (equivalently:)

$$\forall x \in a \exists! y \varphi \rightarrow \exists f(\text{Function}(f) \land \text{Dom}(f) = a \land \forall x \in a. \varphi(x, f(x)))$$

Using this rule and our principles for language extensions, we can develop predicative set theories which have terms not only for Γ_0, but also for $\Gamma(\Gamma_0)$, and for much, much bigger ordinals.