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One of my two aims in this talk is to present my own predicativist
views and systems, which | believe are rather close to Weyl's
original ones as reflected in Das Kontinuum.
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Adding a predicate symbol: Let ¢ be a formula in £ such that
Fv(e) = {x1,...,xa}, and let P be a new n-ary predicate symbol.
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Adding a function symbol: Let ¢ be a formula in £ such that
Fv(v) = {x1,...,Xn, ¥}, and let F be a new n-ary function
symbol. Suppose that F1 Vxg - - - Vx,3lyp. Then T can
conservatively be extended to T* in £ U {F} by the addition of
either of the following axioms:

By =" (x1,....,xn) & ¢
mo{f(x1,...,%xn)/y}
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Skolemization

Let ¢ be a formula in £ such that Fv(p) = {x1,...,xn, ¥}, and let
F be a new n-ary function symbol. Suppose that

Fr Vxy - Vx,dye. Then T can conservatively be extended to T*
in LU {F} by the addition of the axiom p{f(x1,...,x,)/y}.

Puzzle:
mFzr Vx(x # 0 — Jy.y € x)
m By Skolemization, we get that the axiom of global choice,
Vx(x # ) — €(x) € x), can conservatively be added to ZF.

m But it is well-known that the axiom of global choice implies
AC, the usual axiom of choice of ZFC.

m It follows that Fzp AC. Hence ZF and ZFC are equivalent!
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Recursive Definitions — Two Approaches

1) Using induction to justify recursion:

m The use of recursive definitions of functions and predicates in
a system S is justified only if appropriate existence and
uniqueness theorems are proved first in S or in a stronger
version S* of it. Such proofs use principles of induction which
are available in S or §*, and are frequently impredicative.

m If S is first-order then S* is usually either the second-order
version of it, or its meta-theory.
m Examples:
The introduction of + in the books of Landau and Mendelson
on the foundations of Analysis.

The justification of transfinite recursion in standard textbooks
on axiomatic set theories.
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Recursive Definitions — Two Approaches (Continued)

2) Viewing induction and recursion on a par:

m The use of recursive definitions of functions and predicates in
a system S is justified on the same ground that the use of the
corresponding induction principle of S is justified; no further
justification is needed.

m Once the language of S is extended by axioms of a recursive
definition, the induction of S is automatically extended to the
expanded language.

m Examples:

Primitive Recursive Arithmetic (PRA).

Weyl's iteration operation in “Das Kontinuum".

Adding truth-definition to PA and other systems.
In all these examples, the extension of S to the richer language is
not conservative, but it is predicatively justified.
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The Ideal Set Theory

Extensionality:
mVz(zeExcrzey) s x=y
The Comprehension Schema:
B Vx(x € {x|p} < p)
e-induction:
m (Vx(Vy(y € x = @o{y/x}) = ¢)) = Vxp

This theory reflects real mathematical practice. In particular: it
allows the use of abstraction terms.

Ideal, but inconsistent!



Giving up Some lIdeals

Extensionality:
mVz(zEx+rzEy) o x=y
The Comprehension Schema:

m Vx(x € {x | ¢} > ), if pis safe w.r.t. x
(v = {x}).

€-induction:

m (Vx(Vy(y € x = o{y/x}) = ¢)) = Vxp
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Principles of Poincaré-Weyl's Predicativism

m Sets (and functions) are created only by definitions.

“No one can describe an infinite set other than by indi-
cating properties which are characteristic of the elements
of the set. ... The notion that an infinite set as a “gath-
ering” brought together by infinitely many individual arbi-
trary acts of selection, assembled and then surveyed as a
whole by consciousness, is nonsensical;” [Weyl]

m Sets are “produced” genetically [Weyl]. Therefore the
elements of a set are "logically prior” to that set.



Principles of Poincaré-Weyl's Predicativism - Continued

m A definition is predicative if the class it defines is
invariant under extension.

“Hence a distinction between two species of classifications,
which are applicable to the elements of infinite collections:
the predicative classifications, which cannot be disordered
by the introduction of new elements; the non-predicative
classifications, which are forced to remain without end by
the introduction of new elements.” [Poincaré|
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Safety Relations in Set Theories

m A set theory is determined by its safety relation >.
m > is a relation between a formula ¢ and subsets of Fv(yp).

m The meaning of “O(x1,...,Xn, Y1, -, Yk) = {X1,.. ., Xp}" is:
“The collection {(x1,...,x,) | ¢} is an acceptable set for all
acceptable values of yy,. .., yx.

m Predicatively, the meaning is: “the identity of
{(x1,...,%n) | ¢} is stable: it depends only on the values
assigned to yi,..., Yk, but not on the surrounding universe.
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Two Important Special Cases

k = 0: ¢ is predicative with respect to Fv(y) iff it is domain
independent in the sense of database theory.

n=0: ¢ is predicative with respect to (), if for every
transitive S; and S, such that S; € S, and for every
b1 651,...,bk 6512

52|:(p(b1,...,bk)(:)51 )Z(p(bl,...,bk)

I. e., if ¢ is absolute.
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Basic (Set-theoretical) Conditions on Safety

o = 0 if ¢ is atomic.

x=t > {x} if x & Fv(t).

x et {x}if x¢& Fv(t) or tis x.

=0 if o = 0.

oV = X if ¢ = X and ¢ > X.

A = XUY if o= X, ¢ =Y and YN Fv(p)=0.
Jyp = X —{y}ifye Xand ¢ = X.

We denote by >rst the minimal relation which satisfies these
conditions, and by RST (Rudimentary Set Theory) the set theory
which is induced by >rsT.



The Power of RST

m 0 =pr {x|x€x}
ms—t=pr{x|xesAn-xet}
m{ti,....thh=pr{x|x=tV...Vx=ty}

a (t,5) =pr {{t},{t.5}}.
m{xet|p}=pr{x|x€tAp} provided o = (.
m{t(x) | xest=pr{y|Ixxesny =t}

mJt=pr{x|IyyetAxey}
msxt=pr{x|dadb.acsAbectAx=ab)}

m wxo =pf U{x | ¢} (provided ¢ > {x}).

m A\x € s.t =pr {(x,t) | x € s}
mf(x)=priy.3zAv(zefAveEZANy EVAZ=(X,y))
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Handling Other Comprehension Axioms

Each of the other Comprehension axioms of ZF can be captured
(in a modular way) by adding to the definition of >~gs7 a certain
syntactic condition:
Full Separation: ¢ = () for every formula ¢.
Powerset: x C t = {x} if x & Fv(t).
Full Replacement: Jyp AVy(p — ) = X
provided 1) > X, and X N Fv(p) = 0.
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The Axiom of Infinity: Introducing w

Let S(x) = x U {x}.
m Define: N(x):=Vy e S(x)(y =0V 3z e x.y=5(2))
m Obviously, the collection [x:N(x)] is stable.
m This justifies the addition to the language of a new constant
w, together with the following axiom:
Vx(x € w > N(x))

m In RST we have only that N(x) > (). In the new system,
RSTw, we practically have N(x) > {x}. This means many
more instances in the basic language of the schemas of RST.
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Our Framework for Predicative Set Theories

m Our main method of extending a given predicative set theory
T to a stronger one is by adding a new symbol to the
signature of T, together with an axiom that defines it.

m Adding an n-ary predicate symbol P is allowed only if its
defining axiom implies its absoluteness. Like in the case of
t; = tp and t; € ty, stronger safety conditions might hold for
some atomic formulas of the form P(t1,..., t).

m Adding an n-ary function symbol F is allowed only if its
defining axiom implies that if y is not free in ty,..., t, then
the formula y = F(t1,..., t,) is safe with respect to {y}.

m As usual, extending T by a function symbol is allowed only if

T proves some corresponding existence and uniqueness
conditions. Still, the extension is usually not conservative.
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Adding Predicate Symbols

Let £ be a first-order language with equality which includes €, let
T be a theory in £ which is based on the safety relation >,, and
let £* be the language which is obtained from L by the addition of
a new n + k-ary predicate symbol P.

A simple principle: Suppose that ¢ is a formula of £ such that

Fv(e) ={x1,- -, Xn, ¥1,--- Yk} and ¢ =, {y1,...,yk}. Then we
may extend T to a theory T* in L* by:

m Adding the axiom P(xi, ..., Xn, Y1, .., Yk) <> @

m Get >+ by adding to the definition of >, the condition:
P(xty ooy Xns Y15+ -5 Vi) = AVt -+ Yk}

m Extending all the axiom schemas of T to L£*, using >«
instead of >.

An example: add C to RST together with the axiom
x Cy <+ —3z(z€ x ANz ¢y) and the condition: x C y = 0.
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Adding Predicate Symbols — Continued

A stronger principle: We can similarly extend T to T* as above
even if ¢ is a formula of £*, provided that:

¢ has no subformula of the form P(xy ..., xp, v1,..., Vk);
Let u {x1...,x,} and let 1 </, j < n. If both
P(x1,...,xi—1,u,...) and P(x1,...,Xj_1,u,...) are

subformulas of ¢ then i = j.

If P(x1,...,%i—1,U,...)is a subformula of ¢, where
ué{xy...,xp} and i > 1, then v is bound in ¢ by Ju € x;.

90>£* {Yh---a)’k}-

Under these conditions, P is uniquely defined, and is stable.
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Examples

Transitive closure of €: Add to the language the unary predicate
symbol €*, together with the condition y €* x > {y}
and the axiom: y €* x <>y € xVdz € x.y €* z.

The Graph of +: Add to the language the ternary predicate
symbol P, , with the condition P, (a, b, c) = () and
the axiom:

Pi(a,b,c) < (b=0Ac=a)V
(a€cn
Vx€cla<x—dye€bPi(ay,x))A
Vz € baw € ¢ Py (a,z,w))

Similarly, we can define the relations Py, ., Py, and Pr as
absolute relations (on ordinals).

This is not sufficient, though!
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Adding Function Symbols

Let £ be a first-order language with equality which includes €, let
T be a theory in £ which is based on the safety relation >, and
let £* be the language which is obtained from L by the addition of
a new n-ary function symbol F.

A weak principle: Suppose that ¢ is a formula of £ such that
Fv(e) ={x1,...,xn,y} and o =, {y}. If b1 Vxq,...,Vx,3lyp
Then we may extend T to a theory T* in L* by:

m Adding the axiom Vxi, ..., Vxp0{F(x1,...,xn/y}.

m Extending all the axiom schemas of T to L£*, using >+
instead of > .

Examples:

U x, ...
Vx[Vz(z € TC(x) <> z €* x)]
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Adding Function Symbols — Continued

A much stronger principle is obtained from the weak one if instead
of ¢ =, {y} we demand only that ¢ = (.

The resulting T* is in this case not a conservative extension of T,
and it allows to define many new sets. Nevertheless, it is still
predicatively justified by the stability criterion.

Example: Any theory T which extends RST and includes P
proves uniqueness: Py (a, 3,71) A Py(a, B,72) = 71 = 72. If it
proves also existence: Vo, 53vP(a, 3,7) then we can strengthen
T by the addition of the corresponding function symbol +.

For this €-induction frequently does not suffice, though. We need
a new, predicatively justified, principle.
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Predicativity Beyond [y

Feferman's Unification Rule: If ¢ > (), then

From:

Vx € avyiVyapfyi/y Aplya/yt 2y = ye
infer:
Vx € adyyp — 3f(Function(f) A Dom(f) = a AVx € a.p(x, f(x)))
or (equivalently:)
Vx € adlye — 3f(Function(f) A Dom(f) = a AVx € a.p(x, f(x)))
Using this rule and our principles for language extensions, we can

develop predicative set theories which have terms not only for [g,
but also for ['(I'g), and for much, much bigger ordinals.



