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Prologue

All platonists are alike;
each anti-platonist is unhappy in her/his own way...

One of my two aims in this talk is to present my own predicativist
views and systems, which I believe are rather close to Weyl’s
original ones as reflected in Das Kontinuum.
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Explicit Extensions by Definitions

Let L be a first-order language with equality; T — a theory in L

Adding a predicate symbol: Let ϕ be a formula in L such that
Fv(ϕ) = {x1, . . . , xn}, and let P be a new n-ary predicate symbol.
T can conservatively be extended to T? in L∪ {P} by the addition
of the following axiom: P(x1, . . . , xn)↔ ϕ

Adding a function symbol: Let ϕ be a formula in L such that
Fv(ϕ) = {x1, . . . , xn, y}, and let F be a new n-ary function
symbol. Suppose that `T ∀x1 · · · ∀xn∃!yϕ. Then T can
conservatively be extended to T? in L ∪ {F} by the addition of
either of the following axioms:

y = f (x1, . . . , xn)↔ ϕ

ϕ{f (x1, . . . , xn)/y}
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Skolemization

Let ϕ be a formula in L such that Fv(ϕ) = {x1, . . . , xn, y}, and let
F be a new n-ary function symbol. Suppose that
`T ∀x1 · · · ∀xn∃yϕ. Then T can conservatively be extended to T?

in L ∪ {F} by the addition of the axiom ϕ{f (x1, . . . , xn)/y}.

Puzzle:

`ZF ∀x(x 6= ∅ → ∃y .y ∈ x)

By Skolemization, we get that the axiom of global choice,
∀x(x 6= ∅ → ε(x) ∈ x), can conservatively be added to ZF.

But it is well-known that the axiom of global choice implies
AC, the usual axiom of choice of ZFC.

It follows that `ZF AC . Hence ZF and ZFC are equivalent!
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Recursive Definitions — Two Approaches

1) Using induction to justify recursion:

The use of recursive definitions of functions and predicates in
a system S is justified only if appropriate existence and
uniqueness theorems are proved first in S or in a stronger
version S? of it. Such proofs use principles of induction which
are available in S or S?, and are frequently impredicative.

If S is first-order then S? is usually either the second-order
version of it, or its meta-theory.

Examples:

1 The introduction of + in the books of Landau and Mendelson
on the foundations of Analysis.

2 The justification of transfinite recursion in standard textbooks
on axiomatic set theories.
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Recursive Definitions — Two Approaches (Continued)

2) Viewing induction and recursion on a par:

The use of recursive definitions of functions and predicates in
a system S is justified on the same ground that the use of the
corresponding induction principle of S is justified; no further
justification is needed.

Once the language of S is extended by axioms of a recursive
definition, the induction of S is automatically extended to the
expanded language.

Examples:

1 Primitive Recursive Arithmetic (PRA).
2 Weyl’s iteration operation in “Das Kontinuum”.
3 Adding truth-definition to PA and other systems.

In all these examples, the extension of S to the richer language is
not conservative, but it is predicatively justified.
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The Ideal Set Theory

Extensionality:

∀z(z ∈ x ↔ z ∈ y)→ x = y

The Comprehension Schema:

∀x(x ∈ {x | ϕ} ↔ ϕ)

∈-induction:

(∀x(∀y(y ∈ x → ϕ{y/x})→ ϕ))→ ∀xϕ

This theory reflects real mathematical practice. In particular: it
allows the use of abstraction terms.

Ideal, but inconsistent!
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Giving up Some Ideals

Extensionality:

∀z(z ∈ x ↔ z ∈ y)→ x = y

The Comprehension Schema:

∀x(x ∈ {x | ϕ} ↔ ϕ), if ϕ is safe w.r.t. x
(ϕ � {x}).

∈-induction:

(∀x(∀y(y ∈ x → ϕ{y/x})→ ϕ))→ ∀xϕ



Principles of Poincaré-Weyl’s Predicativism

Sets (and functions) are created only by definitions.

“No one can describe an infinite set other than by indi-
cating properties which are characteristic of the elements
of the set. . . . The notion that an infinite set as a “gath-
ering” brought together by infinitely many individual arbi-
trary acts of selection, assembled and then surveyed as a
whole by consciousness, is nonsensical;” [Weyl]

Sets are “produced” genetically [Weyl]. Therefore the
elements of a set are “logically prior” to that set.
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Principles of Poincaré-Weyl’s Predicativism - Continued

A definition is predicative if the class it defines is
invariant under extension.

“Hence a distinction between two species of classifications,
which are applicable to the elements of infinite collections:
the predicative classifications, which cannot be disordered
by the introduction of new elements; the non-predicative
classifications, which are forced to remain without end by
the introduction of new elements.” [Poincaré]



Safety Relations in Set Theories

A set theory is determined by its safety relation �.

� is a relation between a formula ϕ and subsets of Fv(ϕ).

The meaning of “ϕ(x1, . . . , xn, y1, . . . , yk) � {x1, . . . , xn}” is:
“The collection {〈x1, . . . , xn〉 | ϕ} is an acceptable set for all
acceptable values of y1, . . . , yk .

Predicatively, the meaning is: “the identity of
{〈x1, . . . , xn〉 | ϕ} is stable: it depends only on the values
assigned to y1, . . . , yk , but not on the surrounding universe.
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Two Important Special Cases

k = 0: ϕ is predicative with respect to Fv(ϕ) iff it is domain
independent in the sense of database theory.

n = 0: ϕ is predicative with respect to ∅, if for every
transitive S1 and S2 such that S1 ⊆ S2 and for every
b1 ∈ S1, . . . , bk ∈ S1:

S2 |= ϕ(b1, . . . , bk)⇔ S1 |= ϕ(b1, . . . , bk)

I. e., if ϕ is absolute.
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Basic (Set-theoretical) Conditions on Safety

ϕ � ∅ if ϕ is atomic.

x=t � {x} if x 6∈ Fv(t).

x ∈ t � {x} if x 6∈ Fv(t) or t is x .

¬ϕ � ∅ if ϕ � ∅.
ϕ∨ψ � X if ϕ � X and ψ � X .

ϕ∧ψ � X ∪ Y if ϕ � X , ψ � Y and Y ∩ Fv(ϕ) = ∅.
∃yϕ � X − {y} if y ∈ X and ϕ � X .

We denote by �RST the minimal relation which satisfies these
conditions, and by RST (Rudimentary Set Theory) the set theory
which is induced by �RST .
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The Power of RST

∅ =Df {x | x ∈ x}.
s − t =Df {x | x ∈ s ∧ ¬ x ∈ t}
{t1, . . . , tn} =Df {x | x = t1 ∨ . . . ∨ x = tn}
〈t, s〉 =Df {{t}, {t, s}}.
{x ∈ t | ϕ} =Df {x | x ∈ t ∧ ϕ}, provided ϕ � ∅.
{t(x) | x ∈ s} =Df {y | ∃x .x ∈ s ∧ y = t}⋃
t =Df {x | ∃y .y ∈ t ∧ x ∈ y}

s × t =Df {x | ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉}
ιxϕ =Df

⋃
{x | ϕ} (provided ϕ � {x}).

λx ∈ s.t =Df {〈x , t〉 | x ∈ s}
f (x) =Df ιy .∃z∃v(z ∈ f ∧ v ∈ z ∧ y ∈ v ∧ z = 〈x , y〉)



Handling Other Comprehension Axioms

Each of the other Comprehension axioms of ZF can be captured
(in a modular way) by adding to the definition of �RST a certain
syntactic condition:

Full Separation: ϕ � ∅ for every formula ϕ.

Powerset: x ⊆ t � {x} if x 6∈ Fv(t).

Full Replacement: ∃yϕ ∧ ∀y(ϕ→ ψ) � X
provided ψ � X , and X ∩ Fv(ϕ) = ∅.
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The Axiom of Infinity: Introducing ω

Let S(x) = x ∪ {x}.

Define: N(x) := ∀y ∈ S(x)(y = ∅ ∨ ∃z ∈ x .y = S(z))

Obviously, the collection [x:N(x)] is stable.

This justifies the addition to the language of a new constant
ω, together with the following axiom:

∀x(x ∈ ω ↔ N(x))

In RST we have only that N(x) � ∅. In the new system,
RSTω, we practically have N(x) � {x}. This means many
more instances in the basic language of the schemas of RST.
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Our Framework for Predicative Set Theories

Our main method of extending a given predicative set theory
T to a stronger one is by adding a new symbol to the
signature of T, together with an axiom that defines it.

Adding an n-ary predicate symbol P is allowed only if its
defining axiom implies its absoluteness. Like in the case of
t1 = t2 and t1 ∈ t2, stronger safety conditions might hold for
some atomic formulas of the form P(t1, . . . , tn).

Adding an n-ary function symbol F is allowed only if its
defining axiom implies that if y is not free in t1, . . . , tn then
the formula y = F (t1, . . . , tn) is safe with respect to {y}.
As usual, extending T by a function symbol is allowed only if
T proves some corresponding existence and uniqueness
conditions. Still, the extension is usually not conservative.
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Adding Predicate Symbols

Let L be a first-order language with equality which includes ∈, let
T be a theory in L which is based on the safety relation �L, and
let L∗ be the language which is obtained from L by the addition of
a new n + k-ary predicate symbol P.

A simple principle: Suppose that ϕ is a formula of L such that
Fv(ϕ) = {x1, . . . , xn, y1, . . . , yk} and ϕ �L {y1, . . . , yk}. Then we
may extend T to a theory T∗ in L∗ by:

Adding the axiom P(x1, . . . , xn, y1, . . . , yk)↔ ϕ.

Get �L∗ by adding to the definition of �L the condition:
P(x1, . . . , xn, y1, . . . , yk) �L∗ {y1, . . . , yk}
Extending all the axiom schemas of T to L∗, using �L∗
instead of �L.

An example: add ⊆ to RST together with the axiom
x ⊆ y ↔ ¬∃z(z ∈ x ∧ z 6∈ y) and the condition: x ⊆ y � ∅.
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Adding Predicate Symbols — Continued

A stronger principle: We can similarly extend T to T∗ as above
even if ϕ is a formula of L∗, provided that:

1 ϕ has no subformula of the form P(x1 . . . , xn, v1, . . . , vk);

2 Let u 6∈ {x1 . . . , xn} and let 1 ≤ i , j ≤ n. If both
P(x1, . . . , xi−1, u, . . .) and P(x1, . . . , xj−1, u, . . .) are
subformulas of ϕ then i = j .

3 If P(x1, . . . , xi−1, u, . . .) is a subformula of ϕ, where
u 6∈ {x1 . . . , xn} and i ≥ 1, then u is bound in ϕ by ∃u ∈ xi .

4 ϕ �L? {y1, . . . , yk}.

Under these conditions, P is uniquely defined, and is stable.
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Examples

Transitive closure of ∈: Add to the language the unary predicate
symbol ∈?, together with the condition y ∈? x � {y}
and the axiom: y ∈? x ↔ y ∈ x ∨ ∃z ∈ x .y ∈? z .

The Graph of +: Add to the language the ternary predicate
symbol P+, with the condition P+(a, b, c) � ∅ and
the axiom:
P+(a, b, c)↔ (b = ∅ ∧ c = a)∨

(a ∈ c∧
∀x ∈ c(a ≤ x → ∃y ∈ b P+(a, y , x))∧
∀z ∈ b∃w ∈ c P+(a, z ,w))

Similarly, we can define the relations Pλx .ωx , Pφ, and PΓ as
absolute relations (on ordinals).

This is not sufficient, though!



Examples

Transitive closure of ∈: Add to the language the unary predicate
symbol ∈?, together with the condition y ∈? x � {y}
and the axiom: y ∈? x ↔ y ∈ x ∨ ∃z ∈ x .y ∈? z .

The Graph of +: Add to the language the ternary predicate
symbol P+, with the condition P+(a, b, c) � ∅ and
the axiom:
P+(a, b, c)↔ (b = ∅ ∧ c = a)∨

(a ∈ c∧
∀x ∈ c(a ≤ x → ∃y ∈ b P+(a, y , x))∧
∀z ∈ b∃w ∈ c P+(a, z ,w))

Similarly, we can define the relations Pλx .ωx , Pφ, and PΓ as
absolute relations (on ordinals).

This is not sufficient, though!



Examples

Transitive closure of ∈: Add to the language the unary predicate
symbol ∈?, together with the condition y ∈? x � {y}
and the axiom: y ∈? x ↔ y ∈ x ∨ ∃z ∈ x .y ∈? z .

The Graph of +: Add to the language the ternary predicate
symbol P+, with the condition P+(a, b, c) � ∅ and
the axiom:
P+(a, b, c)↔ (b = ∅ ∧ c = a)∨

(a ∈ c∧
∀x ∈ c(a ≤ x → ∃y ∈ b P+(a, y , x))∧
∀z ∈ b∃w ∈ c P+(a, z ,w))

Similarly, we can define the relations Pλx .ωx , Pφ, and PΓ as
absolute relations (on ordinals).

This is not sufficient, though!



Adding Function Symbols

Let L be a first-order language with equality which includes ∈, let
T be a theory in L which is based on the safety relation �L, and
let L∗ be the language which is obtained from L by the addition of
a new n-ary function symbol F .

A weak principle: Suppose that ϕ is a formula of L such that
Fv(ϕ) = {x1, . . . , xn, y} and ϕ �L {y}. If `T ∀x1, . . . ,∀xn∃!yϕ
Then we may extend T to a theory T∗ in L∗ by:

Adding the axiom ∀x1, . . . ,∀xnϕ{F (x1, . . . , xn/y}.
Extending all the axiom schemas of T to L∗, using �L∗
instead of �L.

Examples:

1
⋃

, ×, ...

2 ∀x [∀z(z ∈ TC (x)↔ z ∈? x)]
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Adding Function Symbols — Continued

A much stronger principle is obtained from the weak one if instead
of ϕ �L {y} we demand only that ϕ �L ∅.

The resulting T∗ is in this case not a conservative extension of T,
and it allows to define many new sets. Nevertheless, it is still
predicatively justified by the stability criterion.

Example: Any theory T which extends RST and includes P+

proves uniqueness: P+(α, β, γ1) ∧ P+(α, β, γ2)→ γ1 = γ2. If it
proves also existence: ∀α, β∃γP+(α, β, γ) then we can strengthen
T by the addition of the corresponding function symbol +.

For this ∈-induction frequently does not suffice, though. We need
a new, predicatively justified, principle.
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Predicativity Beyond Γ0

Feferman’s Unification Rule: If ϕ � ∅, then

From:

∀x ∈ a∀y1∀y2.ϕ{y1/y} ∧ ϕ{y2/y} → y1 = y2

infer:

∀x ∈ a∃yϕ→ ∃f (Function(f ) ∧ Dom(f ) = a ∧ ∀x ∈ a.ϕ(x , f (x)))

or (equivalently:)

∀x ∈ a∃!yϕ→ ∃f (Function(f ) ∧ Dom(f ) = a ∧ ∀x ∈ a.ϕ(x , f (x)))

Using this rule and our principles for language extensions, we can
develop predicative set theories which have terms not only for Γ0,
but also for Γ(Γ0), and for much, much bigger ordinals.
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