Arnon Avron

The Active Role of Language Extensions in Mathematical Reasoning

Workshop on Proofs and Formalization in Logic, Mathematics and Philosophy

Utrecht, September 2022

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

All platonists are alike; each anti-platonist is unhappy in her/his own way...

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

All platonists are alike; each anti-platonist is unhappy in her/his own way...

One of my two aims in this talk is to present my own predicativist views and systems, which I believe are rather close to Weyl's original ones as reflected in Das Kontinuum.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Let ${\mathcal L}$ be a first-order language with equality; ${\boldsymbol{\mathsf{T}}}$ — a theory in ${\mathcal L}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let $\mathcal L$ be a first-order language with equality; $\mathbf T$ — a theory in $\mathcal L$

Adding a predicate symbol: Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n\}$, and let P be a new *n*-ary predicate symbol. **T** can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{P\}$ by the addition of the following axiom: $P(x_1, \ldots, x_n) \leftrightarrow \varphi$

Let ${\mathcal L}$ be a first-order language with equality; ${\sf T}$ — a theory in ${\mathcal L}$

Adding a predicate symbol: Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n\}$, and let P be a new *n*-ary predicate symbol. **T** can conservatively be extended to **T**^{*} in $\mathcal{L} \cup \{P\}$ by the addition of the following axiom: $P(x_1, \ldots, x_n) \leftrightarrow \varphi$

Adding a function symbol: Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new *n*-ary function symbol. Suppose that $\vdash_{\mathbf{T}} \forall x_1 \cdots \forall x_n \exists ! y \varphi$. Then **T** can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{F\}$ by the addition of either of the following axioms:

- $y = f(x_1, \ldots, x_n) \leftrightarrow \varphi$
- $\varphi\{f(x_1,\ldots,x_n)/y\}$

Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new *n*-ary function symbol. Suppose that $\vdash_{\mathbf{T}} \forall x_1 \cdots \forall x_n \exists y \varphi$. Then **T** can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{F\}$ by the addition of the axiom $\varphi\{f(x_1, \ldots, x_n)/y\}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Puzzle:

Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new *n*-ary function symbol. Suppose that $\vdash_{\mathbf{T}} \forall x_1 \cdots \forall x_n \exists y \varphi$. Then **T** can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{F\}$ by the addition of the axiom $\varphi\{f(x_1, \ldots, x_n)/y\}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Puzzle:

$$\blacksquare \vdash_{\mathsf{ZF}} \forall x (x \neq \emptyset \rightarrow \exists y. y \in x)$$

Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new *n*-ary function symbol. Suppose that $\vdash_{\mathbf{T}} \forall x_1 \cdots \forall x_n \exists y \varphi$. Then **T** can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{F\}$ by the addition of the axiom $\varphi\{f(x_1, \ldots, x_n)/y\}$.

Puzzle:

- $\blacksquare \vdash_{\mathsf{ZF}} \forall x (x \neq \emptyset \rightarrow \exists y. y \in x)$
- By Skolemization, we get that the axiom of global choice, $\forall x (x \neq \emptyset \rightarrow \epsilon(x) \in x)$, can conservatively be added to **ZF**.

Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new *n*-ary function symbol. Suppose that $\vdash_{\mathbf{T}} \forall x_1 \cdots \forall x_n \exists y \varphi$. Then **T** can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{F\}$ by the addition of the axiom $\varphi\{f(x_1, \ldots, x_n)/y\}$.

Puzzle:

- $\blacksquare \vdash_{\mathsf{ZF}} \forall x (x \neq \emptyset \rightarrow \exists y. y \in x)$
- By Skolemization, we get that the axiom of global choice, $\forall x (x \neq \emptyset \rightarrow \epsilon(x) \in x)$, can conservatively be added to **ZF**.
- But it is well-known that the axiom of global choice implies AC, the usual axiom of choice of ZFC.

Let φ be a formula in \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$, and let F be a new *n*-ary function symbol. Suppose that $\vdash_{\mathbf{T}} \forall x_1 \cdots \forall x_n \exists y \varphi$. Then **T** can conservatively be extended to \mathbf{T}^* in $\mathcal{L} \cup \{F\}$ by the addition of the axiom $\varphi\{f(x_1, \ldots, x_n)/y\}$.

Puzzle:

- $\blacksquare \vdash_{\mathsf{ZF}} \forall x (x \neq \emptyset \rightarrow \exists y. y \in x)$
- By Skolemization, we get that the axiom of global choice, $\forall x (x \neq \emptyset \rightarrow \epsilon(x) \in x)$, can conservatively be added to **ZF**.
- But it is well-known that the axiom of global choice implies AC, the usual axiom of choice of ZFC.
- It follows that ⊢_{ZF} AC. Hence **ZF** and **ZFC** are equivalent!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

(ロト (個) (E) (E) (E) (E) (O) (O)

1) Using induction to justify recursion:

1) Using induction to justify recursion:

The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S* of it. Such proofs use principles of induction which are available in S or S*, and are frequently impredicative.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

1) Using induction to justify recursion:

- The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S* of it. Such proofs use principles of induction which are available in S or S*, and are frequently impredicative.
- If *S* is first-order then *S*^{*} is usually either the second-order version of it, or its meta-theory.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1) Using induction to justify recursion:

- The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S* of it. Such proofs use principles of induction which are available in S or S*, and are frequently impredicative.
- If *S* is first-order then *S*^{*} is usually either the second-order version of it, or its meta-theory.
- Examples:
 - The introduction of + in the books of Landau and Mendelson on the foundations of Analysis.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

1) Using induction to justify recursion:

- The use of recursive definitions of functions and predicates in a system S is justified only if appropriate existence and uniqueness theorems are proved first in S or in a stronger version S* of it. Such proofs use principles of induction which are available in S or S*, and are frequently impredicative.
- If *S* is first-order then *S*^{*} is usually either the second-order version of it, or its meta-theory.
- Examples:
 - The introduction of + in the books of Landau and Mendelson on the foundations of Analysis.
 - **2** The justification of transfinite recursion in standard textbooks on axiomatic set theories.

Recursive Definitions — Two Approaches (Continued)

<□ > < @ > < E > < E > E のQ @

Recursive Definitions — Two Approaches (Continued)

2) Viewing induction and recursion on a par:

The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed.
- Once the language of S is extended by axioms of a recursive definition, the induction of S is automatically extended to the expanded language.

- The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed.
- Once the language of S is extended by axioms of a recursive definition, the induction of S is automatically extended to the expanded language.

Examples:

- **1** Primitive Recursive Arithmetic (**PRA**).
- **2** Weyl's iteration operation in "Das Kontinuum".
- **3** Adding truth-definition to **PA** and other systems.

- The use of recursive definitions of functions and predicates in a system S is justified on the same ground that the use of the corresponding induction principle of S is justified; no further justification is needed.
- Once the language of S is extended by axioms of a recursive definition, the induction of S is automatically extended to the expanded language.
- Examples:
 - **1** Primitive Recursive Arithmetic (**PRA**).
 - **2** Weyl's iteration operation in "Das Kontinuum".
 - **3** Adding truth-definition to **PA** and other systems.

In all these examples, the extension of S to the richer language is not conservative, but it is predicatively justified.

The Ideal Set Theory

Extensionality:

$$\forall z(z \in x \leftrightarrow z \in y) \rightarrow x = y$$

The Comprehension Schema:

$$\forall x (x \in \{x \mid \varphi\} \leftrightarrow \varphi)$$

 \in -induction:

•
$$(\forall x (\forall y (y \in x \rightarrow \varphi \{y/x\}) \rightarrow \varphi)) \rightarrow \forall x \varphi$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The Ideal Set Theory

Extensionality:

$$\forall z(z \in x \leftrightarrow z \in y) \rightarrow x = y$$

The Comprehension Schema:

$$\forall x (x \in \{x \mid \varphi\} \leftrightarrow \varphi)$$

 \in -induction:

•
$$(\forall x (\forall y (y \in x \to \varphi \{y/x\}) \to \varphi)) \to \forall x \varphi$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

This theory reflects real mathematical practice. In particular: it allows the use of abstraction terms.

The Ideal Set Theory

Extensionality:

$$\forall z(z \in x \leftrightarrow z \in y) \rightarrow x = y$$

The Comprehension Schema:

$$\forall x (x \in \{x \mid \varphi\} \leftrightarrow \varphi)$$

 \in -induction:

•
$$(\forall x (\forall y (y \in x \to \varphi \{y/x\}) \to \varphi)) \to \forall x \varphi$$

This theory reflects real mathematical practice. In particular: it allows the use of abstraction terms.

Ideal, but inconsistent!

Extensionality:

$$\forall z(z \in x \leftrightarrow z \in y) \rightarrow x = y$$

The Comprehension Schema:

•
$$\forall x (x \in \{x \mid \varphi\} \leftrightarrow \varphi)$$
, if φ is safe w.r.t. $x (\varphi \succ \{x\})$.

 \in -induction:

$$(\forall x (\forall y (y \in x \to \varphi \{y/x\}) \to \varphi)) \to \forall x \varphi$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Sets (and functions) **are created only by definitions**.

"No one can describe an infinite set other than by indicating properties which are characteristic of the elements of the set. ... The notion that an infinite set as a "gathering" brought together by infinitely many individual arbitrary acts of selection, assembled and then surveyed as a whole by consciousness, is nonsensical;" [Wey1]

Sets (and functions) **are created only by definitions**.

"No one can describe an infinite set other than by indicating properties which are characteristic of the elements of the set. ... The notion that an infinite set as a "gathering" brought together by infinitely many individual arbitrary acts of selection, assembled and then surveyed as a whole by consciousness, is nonsensical;" [Wey1]

Sets are "produced" genetically [Weyl]. Therefore the elements of a set are "logically prior" to that set.

■ A definition is predicative if the class it defines is invariant under extension.

"Hence a distinction between two species of classifications, which are applicable to the elements of infinite collections: the predicative classifications, which cannot be disordered by the introduction of new elements; the non-predicative classifications, which are forced to remain without end by the introduction of new elements." [Poincaré]

Safety Relations in Set Theories

• A set theory is determined by its safety relation \succ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- A set theory is determined by its safety relation \succ .
- \succ is a relation between a formula φ and subsets of $Fv(\varphi)$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- A set theory is determined by its safety relation \succ .
- \succ is a relation between a formula φ and subsets of $Fv(\varphi)$.
- The meaning of "\(\varphi(x_1,...,x_n,y_1,...,y_k)) > {x_1,...,x_n}" is: "The collection {\(\x_1,...,x_n\) | \(\varphi\)} is an acceptable set for all acceptable values of \(y_1,...,y_k\).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- A set theory is determined by its safety relation \succ .
- \succ is a relation between a formula φ and subsets of $Fv(\varphi)$.
- The meaning of "φ(x₁,...,x_n, y₁,..., y_k) ≻ {x₁,...,x_n}" is: "The collection {⟨x₁,...,x_n⟩ | φ} is an acceptable set for all acceptable values of y₁,...,y_k.
- Predicatively, the meaning is: "the identity of $\{\langle x_1, \ldots, x_n \rangle \mid \varphi\}$ is stable: it depends only on the values assigned to y_1, \ldots, y_k , but not on the surrounding universe.

k = 0: φ is predicative with respect to $Fv(\varphi)$ iff it is domain independent in the sense of database theory.

- k = 0: φ is predicative with respect to $Fv(\varphi)$ iff it is domain independent in the sense of database theory.
- n = 0: φ is predicative with respect to \emptyset , if for every transitive S_1 and S_2 such that $S_1 \subseteq S_2$ and for every $b_1 \in S_1, \ldots, b_k \in S_1$:

$$S_2 \models \varphi(b_1,\ldots,b_k) \Leftrightarrow S_1 \models \varphi(b_1,\ldots,b_k)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

I. e., if φ is absolute.

Basic (Set-theoretical) Conditions on Safety

- $\varphi \succ \emptyset$ if φ is atomic.
- $x=t \succ \{x\}$ if $x \notin Fv(t)$.
- $x \in t \succ \{x\}$ if $x \notin Fv(t)$ or t is x.
- $\blacksquare \neg \varphi \succ \emptyset \text{ if } \varphi \succ \emptyset.$
- $\varphi \lor \psi \succ X$ if $\varphi \succ X$ and $\psi \succ X$.
- $\varphi \land \psi \succ X \cup Y$ if $\varphi \succ X$, $\psi \succ Y$ and $Y \cap Fv(\varphi) = \emptyset$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

 $\blacksquare \exists y \varphi \succ X - \{y\} \text{ if } y \in X \text{ and } \varphi \succ X.$

Basic (Set-theoretical) Conditions on Safety

- $\varphi \succ \emptyset$ if φ is atomic.
- $x=t \succ \{x\}$ if $x \notin Fv(t)$.
- $x \in t \succ \{x\}$ if $x \notin Fv(t)$ or t is x.

$$\blacksquare \neg \varphi \succ \emptyset \text{ if } \varphi \succ \emptyset.$$

•
$$\varphi \lor \psi \succ X$$
 if $\varphi \succ X$ and $\psi \succ X$.

•
$$\varphi \land \psi \succ X \cup Y$$
 if $\varphi \succ X$, $\psi \succ Y$ and $Y \cap Fv(\varphi) = \emptyset$.

$$\exists y \varphi \succ X - \{y\} \text{ if } y \in X \text{ and } \varphi \succ X.$$

We denote by \succ_{RST} the minimal relation which satisfies these conditions, and by *RST* (Rudimentary Set Theory) the set theory which is induced by \succ_{RST} .

The Power of *RST*

•
$$\emptyset =_{Df} \{x \mid x \in x\}.$$

• $s - t =_{Df} \{x \mid x \in s \land \neg x \in t\}$
• $\{t_1, \dots, t_n\} =_{Df} \{x \mid x = t_1 \lor \dots \lor x = t_n\}$
• $\langle t, s \rangle =_{Df} \{\{t\}, \{t, s\}\}.$
• $\{x \in t \mid \varphi\} =_{Df} \{x \mid x \in t \land \varphi\}, \text{ provided } \varphi \succ \emptyset.$
• $\{t(x) \mid x \in s\} =_{Df} \{y \mid \exists x.x \in s \land y = t\}$
• $\bigcup t =_{Df} \{x \mid \exists y.y \in t \land x \in y\}$
• $s \times t =_{Df} \{x \mid \exists a \exists b.a \in s \land b \in t \land x = \langle a, b \rangle\}$
• $\iota x \varphi =_{Df} \bigcup \{x \mid \varphi\} \text{ (provided } \varphi \succ \{x\}).$
• $\lambda x \in s.t =_{Df} \{\langle x, t \rangle \mid x \in s\}$
• $f(x) =_{Df} \iota y. \exists z \exists v (z \in f \land v \in z \land y \in v \land z = \langle x, y \rangle)$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Each of the other Comprehension axioms of ZF can be captured (in a modular way) by adding to the definition of \succ_{RST} a certain syntactic condition:

Each of the other Comprehension axioms of ZF can be captured (in a modular way) by adding to the definition of \succ_{RST} a certain syntactic condition:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Full Separation: $\varphi \succ \emptyset$ for every formula φ .

Each of the other Comprehension axioms of ZF can be captured (in a modular way) by adding to the definition of \succ_{RST} a certain syntactic condition:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Full Separation: $\varphi \succ \emptyset$ for every formula φ .

Powerset: $x \subseteq t \succ \{x\}$ if $x \notin Fv(t)$.

Each of the other Comprehension axioms of ZF can be captured (in a modular way) by adding to the definition of \succ_{RST} a certain syntactic condition:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- Full Separation: $\varphi \succ \emptyset$ for every formula φ .
 - Powerset: $x \subseteq t \succ \{x\}$ if $x \notin Fv(t)$.
- Full Replacement: $\exists y \varphi \land \forall y (\varphi \to \psi) \succ X$ provided $\psi \succ X$, and $X \cap Fv(\varphi) = \emptyset$.

The Axiom of Infinity: Introducing $\boldsymbol{\omega}$

Let
$$S(x) = x \cup \{x\}$$
.

<□ > < @ > < E > < E > E 9 < C</p>

The Axiom of Infinity: Introducing $\boldsymbol{\omega}$

Let
$$S(x) = x \cup \{x\}$$
.
Define: $N(x) := \forall y \in S(x)(y = \emptyset \lor \exists z \in x.y = S(z))$

<□ > < @ > < E > < E > E のQ @

The Axiom of Infinity: Introducing ω

Let $S(x) = x \cup \{x\}$.

• Define: $N(x) := \forall y \in S(x)(y = \emptyset \lor \exists z \in x.y = S(z))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

• Obviously, the collection [x:N(x)] is stable.

The Axiom of Infinity: Introducing ω

Let $S(x) = x \cup \{x\}$.

- Define: $N(x) := \forall y \in S(x)(y = \emptyset \lor \exists z \in x.y = S(z))$
- Obviously, the collection [x:N(x)] is stable.
- This justifies the addition to the language of a new constant ω, together with the following axiom:

 $\forall x (x \in \omega \leftrightarrow N(x))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

The Axiom of Infinity: Introducing ω

Let $S(x) = x \cup \{x\}$.

- Define: $N(x) := \forall y \in S(x)(y = \emptyset \lor \exists z \in x.y = S(z))$
- Obviously, the collection [x:N(x)] is stable.
- This justifies the addition to the language of a new constant ω, together with the following axiom:

$\forall x (x \in \omega \leftrightarrow N(x))$

In RST we have only that N(x) ≻ Ø. In the new system,
 RSTω, we practically have N(x) ≻ {x}. This means many more instances in the basic language of the schemas of RST.

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Our main method of extending a given predicative set theory
 T to a stronger one is by adding a new symbol to the signature of T, together with an axiom that defines it.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Our main method of extending a given predicative set theory
 T to a stronger one is by adding a new symbol to the signature of T, together with an axiom that defines it.
- Adding an *n*-ary predicate symbol *P* is allowed only if its defining axiom implies its absoluteness. Like in the case of $t_1 = t_2$ and $t_1 \in t_2$, stronger safety conditions might hold for some atomic formulas of the form $P(t_1, \ldots, t_n)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Our main method of extending a given predicative set theory
 T to a stronger one is by adding a new symbol to the signature of T, together with an axiom that defines it.
- Adding an *n*-ary predicate symbol *P* is allowed only if its defining axiom implies its absoluteness. Like in the case of $t_1 = t_2$ and $t_1 \in t_2$, stronger safety conditions might hold for some atomic formulas of the form $P(t_1, \ldots, t_n)$.
- Adding an *n*-ary function symbol F is allowed only if its defining axiom implies that if y is not free in t_1, \ldots, t_n then the formula $y = F(t_1, \ldots, t_n)$ is safe with respect to $\{y\}$.

- Our main method of extending a given predicative set theory
 T to a stronger one is by adding a new symbol to the signature of T, together with an axiom that defines it.
- Adding an *n*-ary predicate symbol *P* is allowed only if its defining axiom implies its absoluteness. Like in the case of $t_1 = t_2$ and $t_1 \in t_2$, stronger safety conditions might hold for some atomic formulas of the form $P(t_1, \ldots, t_n)$.
- Adding an *n*-ary function symbol F is allowed only if its defining axiom implies that if y is not free in t_1, \ldots, t_n then the formula $y = F(t_1, \ldots, t_n)$ is safe with respect to $\{y\}$.
- As usual, extending T by a function symbol is allowed only if T proves some corresponding existence and uniqueness conditions. Still, the extension is usually not conservative.

Adding Predicate Symbols

Let \mathcal{L} be a first-order language with equality which includes \in , let **T** be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new n + k-ary predicate symbol P.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Let \mathcal{L} be a first-order language with equality which includes \in , let **T** be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new n + k-ary predicate symbol P.

A simple principle: Suppose that φ is a formula of \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y_1, \ldots, y_k\}$ and $\varphi \succ_{\mathcal{L}} \{y_1, \ldots, y_k\}$. Then we may extend **T** to a theory **T**^{*} in \mathcal{L}^* by:

- Adding the axiom $P(x_1, \ldots, x_n, y_1, \ldots, y_k) \leftrightarrow \varphi$.
- Get $\succ_{\mathcal{L}^*}$ by adding to the definition of $\succ_{\mathcal{L}}$ the condition: $P(x_1, \ldots, x_n, y_1, \ldots, y_k) \succ_{\mathcal{L}^*} \{y_1, \ldots, y_k\}$
- Extending all the axiom schemas of **T** to L^{*}, using ≻_{L^{*}} instead of ≻_L.

Let \mathcal{L} be a first-order language with equality which includes \in , let **T** be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new n + k-ary predicate symbol P.

A simple principle: Suppose that φ is a formula of \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y_1, \ldots, y_k\}$ and $\varphi \succ_{\mathcal{L}} \{y_1, \ldots, y_k\}$. Then we may extend **T** to a theory **T**^{*} in \mathcal{L}^* by:

- Adding the axiom $P(x_1, \ldots, x_n, y_1, \ldots, y_k) \leftrightarrow \varphi$.
- Get $\succ_{\mathcal{L}^*}$ by adding to the definition of $\succ_{\mathcal{L}}$ the condition: $P(x_1, \ldots, x_n, y_1, \ldots, y_k) \succ_{\mathcal{L}^*} \{y_1, \ldots, y_k\}$
- Extending all the axiom schemas of **T** to L^{*}, using ≻_{L^{*}} instead of ≻_L.

An example: add \subseteq to **RST** together with the axiom $x \subseteq y \leftrightarrow \neg \exists z (z \in x \land z \notin y)$ and the condition: $x \subseteq y \succeq \emptyset$ is a second

A stronger principle: We can similarly extend **T** to **T**^{*} as above even if φ is a formula of \mathcal{L}^* , provided that:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A stronger principle: We can similarly extend **T** to **T**^{*} as above even if φ is a formula of \mathcal{L}^* , provided that:

- **1** φ has no subformula of the form $P(x_1 \dots, x_n, v_1, \dots, v_k)$;
- **2** Let $u \notin \{x_1, ..., x_n\}$ and let $1 \le i, j \le n$. If both $P(x_1, ..., x_{i-1}, u, ...)$ and $P(x_1, ..., x_{j-1}, u, ...)$ are subformulas of φ then i = j.
- If P(x₁,...,x_{i-1}, u,...) is a subformula of φ, where u ∉ {x₁...,x_n} and i ≥ 1, then u is bound in φ by ∃u ∈ x_i.
 φ ≻_{L*} {y₁,...,y_k}.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

A stronger principle: We can similarly extend **T** to **T**^{*} as above even if φ is a formula of \mathcal{L}^* , provided that:

- **I** φ has no subformula of the form $P(x_1 \dots, x_n, v_1, \dots, v_k)$;
- ≥ Let $u \notin \{x_1, ..., x_n\}$ and let $1 \le i, j \le n$. If both $P(x_1, ..., x_{i-1}, u, ...)$ and $P(x_1, ..., x_{j-1}, u, ...)$ are subformulas of φ then i = j.
- If P(x₁,...,x_{i-1}, u,...) is a subformula of φ, where u ∉ {x₁...,x_n} and i ≥ 1, then u is bound in φ by ∃u ∈ x_i.
 φ ≻_{L*} {y₁,...,y_k}.

Under these conditions, P is uniquely defined, and is stable.

Transitive closure of \in : Add to the language the unary predicate symbol \in^* , together with the condition $y \in^* x \succ \{y\}$ and the axiom: $y \in^* x \leftrightarrow y \in x \lor \exists z \in x.y \in^* z$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Examples

Transitive closure of \in : Add to the language the unary predicate symbol \in^* , together with the condition $y \in^* x \succ \{y\}$ and the axiom: $y \in^* x \leftrightarrow y \in x \lor \exists z \in x. y \in^* z$.

The Graph of +: Add to the language the ternary predicate symbol P_+ , with the condition $P_+(a, b, c) \succ \emptyset$ and the axiom: $P_+(a, b, c) \leftrightarrow (b = \emptyset \land c = a) \lor$ $(a \in c \land$ $\forall x \in c(a \le x \rightarrow \exists y \in b \ P_+(a, y, x)) \land$

 $\forall z \in b \exists w \in c \ P_+(a, z, w))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Similarly, we can define the relations $P_{\lambda x.\omega^x}$, P_{ϕ} , and P_{Γ} as absolute relations (on ordinals).

Examples

Transitive closure of \in : Add to the language the unary predicate symbol \in^* , together with the condition $y \in^* x \succ \{y\}$ and the axiom: $y \in^* x \leftrightarrow y \in x \lor \exists z \in x.y \in^* z.$

The Graph of +: Add to the language the ternary predicate symbol P_+ , with the condition $P_+(a, b, c) \succ \emptyset$ and the axiom: $P_+(a, b, c) \leftrightarrow (b = \emptyset \land c = a) \lor$

> $(a \in c \land)$ $\forall x \in c (a \leq x \rightarrow \exists y \in b \ P_+(a, y, x)) \land$ $\forall z \in b \exists w \in c \ P_+(a, z, w))$

> > ◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ◆

Similarly, we can define the relations $P_{\lambda x.\omega^x}$, P_{ϕ} , and P_{Γ} as absolute relations (on ordinals).

This is not sufficient, though!

Let \mathcal{L} be a first-order language with equality which includes \in , let **T** be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new *n*-ary function symbol *F*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Let \mathcal{L} be a first-order language with equality which includes \in , let **T** be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new *n*-ary function symbol *F*.

A weak principle: Suppose that φ is a formula of \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$ and $\varphi \succ_{\mathcal{L}} \{y\}$. If $\vdash_{\mathsf{T}} \forall x_1, \ldots, \forall x_n \exists ! y \varphi$ Then we may extend T to a theory T^* in \mathcal{L}^* by:

- Adding the axiom $\forall x_1, \ldots, \forall x_n \varphi \{ F(x_1, \ldots, x_n/y \} \}$.
- Extending all the axiom schemas of **T** to L^{*}, using ≻_{L^{*}} instead of ≻_L.

Let \mathcal{L} be a first-order language with equality which includes \in , let **T** be a theory in \mathcal{L} which is based on the safety relation $\succ_{\mathcal{L}}$, and let \mathcal{L}^* be the language which is obtained from \mathcal{L} by the addition of a new *n*-ary function symbol *F*.

A weak principle: Suppose that φ is a formula of \mathcal{L} such that $Fv(\varphi) = \{x_1, \ldots, x_n, y\}$ and $\varphi \succ_{\mathcal{L}} \{y\}$. If $\vdash_{\mathsf{T}} \forall x_1, \ldots, \forall x_n \exists ! y \varphi$ Then we may extend T to a theory T^* in \mathcal{L}^* by:

- Adding the axiom $\forall x_1, \ldots, \forall x_n \varphi \{ F(x_1, \ldots, x_n/y \} \}$.
- Extending all the axiom schemas of **T** to L^{*}, using ≻_{L^{*}} instead of ≻_L.

Examples:

2
$$\forall x [\forall z (z \in TC(x) \leftrightarrow z \in x)]$$

.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The resulting T^* is in this case not a conservative extension of T, and it allows to define many new sets. Nevertheless, it is still predicatively justified by the stability criterion.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The resulting T^* is in this case not a conservative extension of T, and it allows to define many new sets. Nevertheless, it is still predicatively justified by the stability criterion.

Example: Any theory **T** which extends **RST** and includes P_+ proves uniqueness: $P_+(\alpha, \beta, \gamma_1) \wedge P_+(\alpha, \beta, \gamma_2) \rightarrow \gamma_1 = \gamma_2$. If it proves also existence: $\forall \alpha, \beta \exists \gamma P_+(\alpha, \beta, \gamma)$ then we can strengthen **T** by the addition of the corresponding function symbol +.

The resulting T^* is in this case not a conservative extension of T, and it allows to define many new sets. Nevertheless, it is still predicatively justified by the stability criterion.

Example: Any theory **T** which extends **RST** and includes P_+ proves uniqueness: $P_+(\alpha, \beta, \gamma_1) \land P_+(\alpha, \beta, \gamma_2) \rightarrow \gamma_1 = \gamma_2$. If it proves also existence: $\forall \alpha, \beta \exists \gamma P_+(\alpha, \beta, \gamma)$ then we can strengthen **T** by the addition of the corresponding function symbol +.

For this \in -induction frequently does not suffice, though. We need a new, predicatively justified, principle.

Feferman's Unification Rule: If $\varphi \succ \emptyset$, then From:

$$\forall x \in a \forall y_1 \forall y_2. \varphi\{y_1/y\} \land \varphi\{y_2/y\} \rightarrow y_1 = y_2$$

infer:

 $\forall x \in a \exists y \varphi \rightarrow \exists f(Function(f) \land Dom(f) = a \land \forall x \in a.\varphi(x, f(x)))$ or (equivalently:)

 $\forall x \in a \exists ! y \varphi \rightarrow \exists f(Function(f) \land Dom(f) = a \land \forall x \in a.\varphi(x, f(x)))$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ◆

Feferman's Unification Rule: If $\varphi \succ \emptyset$, then

From:

$$\forall x \in a \forall y_1 \forall y_2. \varphi\{y_1/y\} \land \varphi\{y_2/y\} \to y_1 = y_2$$

infer:

 $\forall x \in a \exists y \varphi \rightarrow \exists f(Function(f) \land Dom(f) = a \land \forall x \in a.\varphi(x, f(x)))$ or (equivalently:)

 $\forall x \in a \exists ! y \varphi \rightarrow \exists f(Function(f) \land Dom(f) = a \land \forall x \in a.\varphi(x, f(x)))$

Using this rule and our principles for language extensions, we can develop predicative set theories which have terms not only for Γ_0 , but also for $\Gamma(\Gamma_0)$, and for much, much bigger ordinals.