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What is Strict Finitism?

* Another constructive view of mathematics.
»Based on practical constructibility (& verifiability).

» Constructive: Replace “in principle” of
intuitionism by “in practice”.

“A number is constructible in principle iff it is constructible in practice
with some finite extension of cognitive resources.”

> Finitistic: N vs as much as you can actually #zz
construct (represent). 4




Today’s Aims

* Show Wright’s informal SF argument.

* Provide a formal logic based on Wright's sketch, similar to
intuitionistic logic.

» In the classical metatheory.

» A complete pair of the semantics & a proof system.
* Present some informal notions formalised.

»Incl. that relation with intuitionism.

» To explicate the philosophical standpoint.

s SF: Strict Finitism (Finitistic)



1. Wright’s Informal Argument



;. Wright's SF Metatheory

* Practical possibilities (e.g. constructibility) satisfy...

»(Basis) There is a starting point: e.g. 0 is
constructible.

» (Tolerance) If something is constructible, then
anything adjacent’ (e.g. successor) is constructible.

»(Boundedness) There is an unconstructible upper
bound to those constructible.

» (Decidability) Anything is either constructible or ==
unconstructible. V.

* Apply also to verifiability, representablity etc.




The Setting

e Two practical possibility predicates.

» H(x): x is decimally representable.
» H'(x): x is representable in some notation.
e Two functions. e« With tolerance
> p(x): x’s predecessor.  » vx[H(x) » H(p(x)) A H(s(x))]
» s(x):x’s successor. > Vx[H'(x) » H'(p(x)) AH'(s(x))].
* An object.
> o:with H' (¢) and =H(0): e.g. 1,000,0001,000.000 &g




The Setting

* Two collections of nhumbers.

> Y= {TllH,(Tl) NDO<n< U} ------ | Representable numbers (H')
> X =2Z\{0,0}.

5x100 2022 —1 1,000,0001000,000
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. Decimally representable numbers (H)




(My) Observation

* H’s extension is closed under s: H(n) = H(S(n)).

- —HH

O— > U

* [ts complement is closed under p: =H(n) = —|H(p(n)).

» As though H(n) means that n is a “standard
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number”, as opposed to a “nonstandard” one. M s




The Claim

* There is a bijection between 2 and 2.




The Argument

 Define a collection f € X X X~ of pairs by

0 m m o
(mn) € f < (H(m) AN = S(m)) V (—lH(m) AN = p(m)).

n N
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Functionality

eYmeXIA'neX™ [(mn) € f].

O— > U

* Case distinction: H(m) or =H(m).
e The unigueness comes from uniqueness of s and p.
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Presenter
Presentation Notes
Note. The case distinction that Wright actually made was between H(f(m)) and neg H(f(m)). Don’t forget that this is my reconstruction of his argument.


Injectivity

eYmm' eX[f(m)=f(m') = m=m].

O— > U

* Case distinction: H(m) or =H(m).
e Use uniqueness of s and p.
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Surjectivity

eVYneX dme X [f(m) = n].

O— > U

e Case distinction: H(n) or =H(n).
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2. Formal Logic: Semantics



SF to Classical Metatheory

* Wright: “strict finitistic trees” and forcing conditions in
nis SF metatheory.

* Interpret into the classical metatheory.

» Make SF inferences intelligible to us.
» Use classical principles: induction & LEM.

» Formalise SF principles.

* A semantics similar to IQCE, with the “existence”
predicate E.
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Language & Models

 The "existence’ predicate E:
“constructed” or “available”.

e Rooted tree-like intuitionistic models
(K,<,D,],v) such that...

each branch is at most countably long;
D: the constant domain.
J: the interpretation function.

Root @ 4. v:the valuation function.

»Represents all possible histories of the agent’s actual
verification, from our perspective.

. »Strictness: k E P(c) =k EE(c), k E E(f(c)) = k E E(c).




Strict Finitistic Implication

» “Practical implication”.

e k=EA-> Biff foranyk' > k,ifk’' E A,
then thereisa k' > k' such that k'’ & B.

> B comes after A sooner or later”.
» Intuitionistic implication with time-gap.

k @ A— B
e~ A =4 -1

> Intuitionistic, local negation, /{{f
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Global Negation

o e e =2 ANff L B A for all nodes L.

»Practically unverifiable.
»If somewhere, then everywhere.

k = ==Aiff [ E A for some [.
» Practically verifiable.

k = AV ——=A for all k: “Weak LEM” is valid.

T erA Ll | LN
»“
"d *

» Verifiability is decidable. =
»Formalisation of (decidability). i

Root @
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2 Modes of Quantification

 P(c) refers to a constructed objects.

e —P(c) refers to an object in the
scope of discourse.

L adx=P(x) »“Local” & “global” quantification.

| Class GN.

/" N=1L|-Form|N ANINV NIN - N|VxN|3xN
\ /e _.will always be global (“Global Negative”). , ..
RN ¢ -

-~ e Aterm occursin A globally if it occurs in a
Root @ GN subformula of A.
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E Global & Local 3

»For x occurring only globally.

= J3xA iff k = A[d/x] for some
.../ deD.

o S e

- »Otherwise...

ek EAxAiffk EE (E) A A[E/ x| for

somed € D.
Root @
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Global & Local V

»For x occurring only globally.

= VxAiffkET - A[E/x] for
alld € D.

» Otherwise...

k evxAd *k EVXAiffk e E(d) - Ald/x]
foralld € D.
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Validity

 W: the class of all models.
e Aisvalidin W € W (], A) if forced at all nodes in W.

e Ais valid in W (EY,, A) if forced inall W € W.

e A is a semantic consequence of T'in W (I £y, A) if for
allnode k, k = B for all B € I'implies k = A.

> T EY, Ais likewise.
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Valid Formulas

*Hold: mAV ——4,~~A - A, ((A-> B) - A) - A

eFail: Av =4, =—-A —>A,|V|P(=VA > B&EV A=EY B.)
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3. Formal Logic: Proof System



Natural Deduction NSF

1

*(A) & (V): Classical. T .

EG(Q)  grp,
E(o)

e (Strictness):
e (Stability):

ClassGT: S := T|N|SAS|SVN|NV S|Form - Form|VxForm
N € GN

o Aisstablein W € Wif ~~ A E], A.
* ForallA € ST, ~~ A EY}, A.




Natural Deduction NSF |

— A[y/x]_ V-glo |

VxA




! Claim: Soundness & Completeness

*Soundness: I Fysp 4 implies T EY,, A.
» Routine.

e Completeness: I :1‘3, A implies I' FyngoF A.
» Complicated, but a usual Henkin-style proof.
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4. Prevalence: A “Rejected”
Principle



(o

Prevalence: Strong Verifiability

P An

e Ais prevalent if for any node k,
thereisa k > k' such that k' E A.

Root @

» Satisfiability (——A4) is weaker

“A is eventually verified, in any case.”
» Stronger practical verifiability:

“A is verified, in some case.” (& <
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“Formula Prevalence” Principle

“If satisfiable, then prevalent”.

» Maybe unnatural;
» Collapses the two notions.
» Wright rejected.

e But equivalent to (formalised by):
»—-A - A.

»(A - B) - ( (A-> —=B) > —IA)_

> Wright expected.

Root @
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Study of Prevalence

* The object prevalence: foralld € D, EF E(E).

* Wkp: the class of the models with the formula
prevalence & the object prevalence.

» Formalisation of the relation with intuitionism
(propositional case).
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Propositional Case

e Rooted tree-like intuitionistic models
(K, <, v) such that...

1. each branch is at most countably long;
2. v:the valuation function.

3. if k € v(p) for some k, then forany [ € K,
thereisan [’ = L such that I € v(p).

Root : .
¢ »The atomic prevalence condition.

»Implies the formula prevalence of all complex formulas.
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! One SF model = one IPC node

welU e LetU < Wp, and arrange U in
ascending order < of practical
verification power. Then (U, <) is

an IPC model. \_¢,, e var| =7 p) .
* (U, <) represents the same agent

from various generations with
Increasing power.

Later
Y » <:“generation order”.

Earlier 5 (11, <): “generation (g-)structure”. /&
» ( :the class of all g-structures. '

Root-model R € ‘U
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! A New Relation: G-Forcing II-

> W = (Kw, Sw, vw> e U.

‘e G-valuation ve:Var = P(U X Uyey Kw)-
> (W, k) € ve(p) iff k € vy, (p).
» Then v persists.

Root-model R € ‘U
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E A New Relation: G-Forcing II-

> G =(U,<)EQ.

> W =(Ky, <w,vy) €U

g e G-forcing likg:

1. W,k kg piff (W, k) € v (p);

4, W,k g A - Biffforany W' =W
and k'(€ Kyyr) =k, if W', k' kg A,
then forsome k"' (€ Ky,,) = k', ===
W' k" II-; B.

> I is an SF forcing with increasing power.
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G to IPC

> G =(U,<)EQ.
> W = (Kw, Sw, vw> e U.

 Define an IPC valuation v: Var —» U:

> W € v(p) iff Y, p (iff k = p for
some k € Ky).

> “IF"” captures practical
verifiability in each W.

* I =(U,<,v)isan IPCmodel. 2#=

36



IPCto ¢

 AnyIPC model I = (U*, <% v*) always induces a g-
structure G;...

U, Us ”
Uz\/
\Uz/ U, .

such thatforallU € U*, U I+ Aiff Wy, U lI- in G;.
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“In Principle” = “in Practice™ + Extension

e AisvalidinG € Git W,k lIr; for all pair (W, k).
e ThenAisvalidinall G € G iff Fypc A.

» Formalises: “verifiability in principle” is
“verifiability in practice with extension of
verification power” in this sense.

38




Summary

e Reconstructed & presented a formalisation of Crispin
Wright’s strict finitistic logic.
» Reproduced the (decidability) principle.

» Revealed the rejected principle “prevalence” is
equivalent to something expected.

» Formalised “verifiability in principle = verifiability
in practice + extension in power” in the prevalent
class.




A. Unused Slides



Lineage of Strict Finitistic Ideas

1982: Wright, “Strict Finitism” e i

1975: Dummett, “Wang’s Paradox”

Intuitionism Strict Finitism

1935: Bernays In principle J In practice

1958: Yessenin-Volpin
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Classical Equivalences

* Prevalence is classical: inany W € Wk,
>EP AANB iff X Aand EF B. »E' vxA iff EF A(d) forall d € D.
>EP AVvB iffE? Aoref B, »EP 3xA iff P A(d) for some d € D.
> A - B iff " Aor P B.
>EP A iff kY Aiff EP~ A

42
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