Workshop on Proofs and Formalization in Logic, Mathematics and Philosophy @Utrecht, the Netherlands

A Formalisation of Crispin Wright's Strict Finitistic First-order Logic

Bontanilintan

Takahiro Yamada* Utrecht University (PhD Student) 21 Sep. 2022 * g.yamadatakahiro@gmail.com

What is Strict Finitism?

• Another constructive view of mathematics.

Based on practical constructibility (& verifiability). Constructive: Replace "in principle" of intuitionism by "in practice".

"A number is constructible in principle iff it is constructible in practice with some finite extension of cognitive resources."

Finitistic: N vs as much as you can actually construct (represent).

Today's Aims

- Show Wright's informal SF argument.
- Provide a formal logic based on Wright's sketch, similar to intuitionistic logic.
 - > In the classical metatheory.
 - A complete pair of the semantics & a proof system.
- Present some informal notions formalised.

➢Incl. *that* relation with intuitionism.

➤To explicate the philosophical standpoint.

SF: Strict Finitism (Finitistic)

1. Wright's Informal Argument

Wright's SF Metatheory

- Practical possibilities (e.g. constructibility) satisfy...
 - (Basis) There is a starting point: e.g. 0 is constructible.
 - (Tolerance) If something is constructible, then anything `adjacent' (e.g. successor) is constructible.
 - (Boundedness) There is an unconstructible upper bound to those constructible.
 - (Decidability) Anything is either constructible or unconstructible.
- Apply also to verifiability, representablity etc.

ncepts

The Setting

- Two practical possibility predicates.
 - > H(x): x is decimally representable.
 - > H'(x): x is representable in some notation.
- Two functions.

- With tolerance
- \succ p(x): x's predecessor.
- > s(x): x's successor.
- $\succ \forall x [H(x) \to H(p(x)) \land H(s(x))].$ $\succ \forall x [H'(x) \to H'(p(x)) \land H'(s(x))].$

• An object.

 $\succ \sigma$: with $H'(\sigma)$ and $\neg H(\sigma)$: e.g. 1,000,000^{1,000,000}

The Setting

• Two collections of numbers.

$$\sum := \{n | H'(n) \land 0 \le n \le \sigma\} \dots \square \text{Representable numbers } (H')$$

$$\sum := \sum \{0, \sigma\}.$$

Argument

(My) Observation

• *H*'s extension is closed under $s: H(n) \Rightarrow H(s(n))$.

• Its complement is closed under $p: \neg H(n) \Rightarrow \neg H(p(n))$.

As though H(n) means that n is a "standard number", as opposed to a "nonstandard" one.

The Claim

• There is a bijection between Σ and Σ^- .

Areument

The Argument

• Define a collection $f \subseteq \Sigma \times \Sigma^-$ of pairs by

 $(m,n) \in f \Leftrightarrow (H(m) \land n = s(m)) \lor (\neg H(m) \land n = p(m)).$

Argument

Functionality

- $\forall m \in \Sigma \exists ! n \in \Sigma^{-} [(m, n) \in f].$
 - $\begin{bmatrix} 0 & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & & \\ &$
- Case distinction: H(m) or $\neg H(m)$.
- The uniqueness comes from uniqueness of *s* and *p*.

- Case distinction: H(m) or $\neg H(m)$.
- Use uniqueness of *s* and *p*.

• Case distinction: H(n) or $\neg H(n)$.

2. Formal Logic: Semantics

SF to Classical Metatheory

- Wright: "strict finitistic trees" and forcing conditions in his SF metatheory.
- Interpret into the classical metatheory.
 - Make SF inferences intelligible to us.
 - ➢ Use classical principles: induction & LEM.
 - ➢ Formalise SF principles.
- A semantics similar to IQCE, with the "existence" predicate *E*.

Language & Models

- The `existence' predicate *E*: "constructed" or "available".
- Rooted tree-like intuitionistic models $\langle K, \leq, D, J, v \rangle$ such that...
- . each branch is at most countably long;
- 2. *D*: the constant domain.
- 3. *J*: the interpretation function.
- 4. v: the valuation function.

Represents all possible histories of the agent's actual verification, from our perspective.

 $k \bullet E(c)$

Root

≻Strictness: $k \models P(c) \Rightarrow k \models E(c), k \models E(f(c)) \Rightarrow k \models E(c).$

Strict Finitistic Implication

 $k'' \bullet \overset{\mathsf{D}}{A}$

 $k' \bullet A$

 $k \bullet A \to B$

➤ "Practical implication".

• $k \vDash A \rightarrow B$ iff, for any $k' \ge k$, if $k' \vDash A$, then there is a $k'' \ge k'$ such that $k'' \vDash B$.

"B comes after A sooner or later".
Intuitionistic implication with time-gap.

 $\bullet \sim A \coloneqq A \to \perp$

Intuitionistic, local negation.

 $k'' \bullet \frac{B}{A}$

k'

Global Negation

- $k \models \neg A$ iff $l \not\models A$ for all nodes l.
 - ➢ Practically unverifiable.

➢ If somewhere, then everywhere.

• $k \models \neg \neg A$ iff $l \models A$ for some l. > Practically verifiable.

• $k \models \neg A \lor \neg \neg A$ for all k: "Weak LEM" is valid.

➢Verifiability is decidable.

Formalisation of (decidability).

Root

 $k \bullet \neg P(c)$

2 Modes of Quantification

- P(c) refers to a constructed objects.
- $\neg P(c)$ refers to *an object* in the scope of discourse.
- "Local" & "global" quantification.

Class GN:

 $k \bullet \exists x \neg P(x)$

 $N \coloneqq \bot \mid \neg \operatorname{Form} \mid N \land N \mid N \lor N \mid N \to N \mid \forall xN \mid \exists xN$

- ...will always be global ("Global Negative").
- A term *occurs* in *A globally* if it occurs in a GN subformula of *A*.

Root

Global & Local **B**

For x occurring only globally. • $k \models \exists xA$ iff $k \models A[\overline{d}/x]$ for some $d \in D$.

≻Otherwise…

• $k \models \exists xA \text{ iff } k \models E(\overline{d}) \land A[\overline{d}/x] \text{ for}$ some $d \in D$.

Root

 $k \in \exists x \neg P(x)$

Validity

- \mathcal{W} : the class of all models.
- A is valid in $W \in \mathcal{W}$ ($\vDash_W^V A$) if forced at all nodes in W.
- A is valid in $\mathcal{W} (\models_{\mathcal{W}}^{V} A)$ if forced in all $W \in \mathcal{W}$.
- A is a semantic consequence of Γ in W ($\Gamma \vDash_W^V A$) if for all node $k, k \vDash B$ for all $B \in \Gamma$ implies $k \vDash A$.

 $\succ \Gamma \vDash^{V}_{\mathcal{W}} A$ is likewise.

Valid Formulas

• Hold: $\neg A \lor \neg \neg A$, $\sim \sim A \to A$, $((A \to B) \to A) \to A$.

• Fail: $A \lor \neg A$, $\neg \neg A \to A$, MP ($\models^{V} A \to B \& \models^{V} A \Longrightarrow \models^{V} B$.)

3. Formal Logic: Proof System

Natural Deduction NSF

- (Λ) & (V): Classical. $-\frac{\top}{T}$ $\stackrel{\top}{}$ $-\frac{\bot}{A}$ \bot^{E}
- (Strictness): $\frac{P(c)}{E(c)}$ STR₁
- (Stability): $\frac{\sim S}{S}$ ST

STR₁
$$\frac{E(f(c))}{E(c)}$$
 STR₂

Class GT: $S := \top |N| S \land S |S \lor N| N \lor S |Form \rightarrow Form |\forall x Form$ $N \in GN$

- A is *stable* in $W \in \mathcal{W}$ if $\sim \sim A \vDash_W^V A$.
- For all $A \in ST$, $\sim \sim A \vDash_{\mathcal{W}}^{V} A$.

Natural Deduction NSF

Claim: Soundness & Completeness

• Soundness: $\Gamma \vdash_{NSF} A$ implies $\Gamma \vDash_{\mathcal{W}}^{V} A$. > Routine.

• Completeness: $\Gamma \vDash_{\mathcal{W}}^{V} A$ implies $\Gamma \vdash_{NSF} A$. \succ Complicated, but a usual Henkin-style proof.

4. Prevalence: A "Rejected" Principle

Prevalence: Strong Verifiability

"A is verified, in some case."

"Formula Prevalence" Principle

 $k' \bullet A$ A • "If satisfiable, then prevalent". \succ Maybe unnatural; \succ Collapses the two notions. k > Wright rejected. But equivalent to (formalised by): $\triangleright \neg \neg A \rightarrow A.$ Root $\succ (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A).$

Wright expected.

Study of Prevalence

- The *object prevalence*: for all $d \in D$, $\models^{P} E(\overline{d})$.
- \mathcal{W}_{P} : the class of the models with the formula prevalence & the object prevalence.
 - Formalisation of the relation with intuitionism (propositional case).

Models: Propositional Case

- Rooted tree-like intuitionistic models $\langle K, \leq, v \rangle$ such that...
- each branch is at most countably long;
- 2. v: the valuation function.
- 3. if $k \in v(p)$ for some k, then for any $l \in K$, there is an $l' \ge l$ such that $l' \in v(p)$.

➤The atomic prevalence condition.

Implies the formula prevalence of all complex formulas.

One **SF** model = one **IPC** node

- Let $\mathcal{U} \subseteq \mathcal{W}_{P}$, and arrange \mathcal{U} in ascending order \leq of <u>practical</u> <u>verification power</u>. Then $\langle \mathcal{U}, \leq \rangle$ is an **IPC** model. $\langle p \in Var | \models^{P} p \rangle$.
- ⟨U, ≼⟩ represents the same agent from various generations with increasing power.
- $\forall r \geq \leq$: "generation order".
- Earlier \succ $\langle \mathcal{U}, \preccurlyeq \rangle$: "generation (g-)structure". \succ G : the class of all g-structures. ◀

A New Relation: G-Forcing II- \succ $G = \langle \mathcal{U}, \preccurlyeq \rangle \in G$. $W \in \mathcal{U}$ $\succ W = \langle K_W, \leq_W, v_W \rangle \in \mathcal{U}.$ **G-valuation** v_G : Var $\rightarrow \mathcal{P}(\mathcal{U} \times \bigcup_{W \in \mathcal{U}} K_W)$. \succ (W, k) \in $v_G(p)$ iff $k \in v_W(p)$. \succ Then v_G persists. Root-model $R \in \mathcal{U}$

A New Relation: G-Forcing II-

- *G* = ⟨*U*, ≤⟩ ∈ *G*. *W* = ⟨*K*_W, ≤_W, *v*_W⟩ ∈ *U*.
- G-forcing \amalg_G : 1. $W, k \amalg_G p$ iff $(W, k) \in v_G(p)$;

4. $W, k \Vdash_G A \to B$ iff for any $W' \ge W$ and $k' (\in K_{W'}) \ge k$, if $W', k' \amalg_G A$, then for some $k'' (\in K_{W'}) \ge k'$, $W', k'' \amalg_G B$.

➢ II⊢ is an SF forcing with increasing power.

- G to IPC $F G = \langle \mathcal{U}, \preccurlyeq \rangle \in G.$ $F W = \langle K_W, \leq_W, v_W \rangle \in \mathcal{U}.$
 - Define an IPC valuation $v: Var \rightarrow \mathcal{U}:$
 - $W \in v(p) \text{ iff } \vDash_{W}^{P} p \text{ (iff } k \vDash p \text{ for } some \ k \in K_W \text{).}$
 - $I_G = \langle \mathcal{U}, \leq, \nu \rangle$ is an **IPC** model.

 $\succ W \Vdash_{I_G} A \text{ iff } W, k \amalg_G A \text{ for some } k \in K_W.$

IPC to ${\cal G}$

• Any IPC model $I = \langle U^*, \leq^*, v^* \rangle$ always induces a gstructure G_I ...

Theorems

"In Principle" = "in Practice" + Extension

- A is valid in $G \in G$ if $W, k \Vdash_G$ for all pair (W, k).
- Then A is valid in all $G \in G$ iff $\vdash_{IPC} A$.
 - Formalises: "verifiability in principle" is "verifiability in practice with extension of verification power" in this sense.

- Reconstructed & presented a formalisation of Crispin Wright's *strict finitistic logic*.
 - Reproduced the (decidability) principle.
 - Revealed the rejected principle "prevalence" is equivalent to something expected.
 - Formalised "verifiability in principle = verifiability in practice + extension in power" in the prevalent class.

A. Unused Slides

Lineage of Strict Finitistic Ideas

Classical Equivalences

• Prevalence is classical: in any $W \in \mathcal{W}_{P}$,

 $\begin{array}{l} \blacktriangleright \models^{P} A \land B \text{ iff } \models^{P} A \text{ and } \models^{P} B. \quad \nearrow \models^{P} \forall xA \text{ iff } \models^{P} A(d) \text{ for all } d \in D. \\ \end{matrix}$ $\begin{array}{l} \vdash \models^{P} A \lor B \text{ iff } \models^{P} A \text{ or } \models^{P} B. \quad \implies \models^{P} \exists xA \text{ iff } \models^{P} A(d) \text{ for some } d \in D. \\ \end{array}$ $\begin{array}{l} \vdash \models^{P} A \rightarrow B \text{ iff } \not \models^{P} A \text{ or } \models^{P} B. \\ \end{matrix}$ $\begin{array}{l} \vdash \models^{P} \neg A \text{ iff } \not \models^{P} A \text{ iff } \models^{P} \sim A \end{array}$

